update
This commit is contained in:
@@ -3,31 +3,28 @@ import ComplexModule
|
|||||||
import Foundation
|
import Foundation
|
||||||
import OdeInt
|
import OdeInt
|
||||||
import PFFFT
|
import PFFFT
|
||||||
import PFFFTLib
|
|
||||||
import RealModule
|
|
||||||
|
|
||||||
public struct Parameters {
|
public struct TimeParameters {
|
||||||
/// The ratio of power between low and high frequencies.
|
/// The number of beats to simulate.
|
||||||
let lfhfRatio: Double = 0.5
|
let numBeats: Int = 12
|
||||||
|
|
||||||
/// The ECT amplitude in mV.
|
/// The ECG sampling frequency in Hz.
|
||||||
let amplitude: Double = 1.4
|
let sfEcg: Int = 256
|
||||||
|
|
||||||
|
/// The internal sampling frequency in Hz.
|
||||||
|
let sfInternal: Int = 512
|
||||||
|
|
||||||
|
/// The mean heart rate in beats per minute.
|
||||||
|
let hrMean: Double = 70.0
|
||||||
|
|
||||||
|
/// The standard deviation of the heart rate.
|
||||||
|
let hrStd: Double = 1.0
|
||||||
|
|
||||||
/// RNG seed value.
|
/// RNG seed value.
|
||||||
let seed: UInt64 = 111
|
let seed: UInt64 = 2
|
||||||
|
}
|
||||||
/// Amplitude of the noise.
|
|
||||||
let aNoise: Double = 0.0
|
|
||||||
|
|
||||||
/// The angle of each attractor (P, Q, R, S, T) around the limit cycle, in radians.
|
|
||||||
let theta: [Double] = [-60, -15, 0, 15, 90].map { $0 * .pi / 180 }
|
|
||||||
|
|
||||||
/// Widths of the attractors (P, Q, R, S, T).
|
|
||||||
let a: [Double] = [1.2, -5, 30, -7.5, 0.75]
|
|
||||||
|
|
||||||
/// The position of attractors (P, Q, R, S, T) above or below the z=0 plane.
|
|
||||||
let b: [Double] = [0.25, 0.1, 0.1, 0.1, 0.4]
|
|
||||||
|
|
||||||
|
public struct RRParameters {
|
||||||
/// Mayer wave frequency in Hz.
|
/// Mayer wave frequency in Hz.
|
||||||
let flo = 0.1
|
let flo = 0.1
|
||||||
|
|
||||||
@@ -39,23 +36,26 @@ public struct Parameters {
|
|||||||
|
|
||||||
/// fhi standard deviation.
|
/// fhi standard deviation.
|
||||||
let fhistd = 0.01
|
let fhistd = 0.01
|
||||||
|
|
||||||
|
/// The ratio of power between low and high frequencies.
|
||||||
|
let lfhfRatio: Double = 0.5
|
||||||
}
|
}
|
||||||
|
|
||||||
public struct TimeParameters {
|
public struct Parameters {
|
||||||
/// The number of beats to simulate.
|
/// The ECG amplitude in mV.
|
||||||
let numBeats: Int = 8
|
let range: (Double, Double) = (-0.4, 1.4)
|
||||||
|
|
||||||
/// The ECG sampling frequency in Hz.
|
/// Amplitude of the noise.
|
||||||
let sfEcg: Int = 256
|
let aNoise: Double = 0.0
|
||||||
|
|
||||||
/// The internal sampling frequency in Hz.
|
/// The angle of each attractor (P, Q, R, S, T) around the limit cycle, in radians.
|
||||||
var sfInternal: Int = 512
|
let theta: [Double] = [-70, -15, 0, 15, 100].map { $0 * .pi / 180 }
|
||||||
|
|
||||||
/// The mean heart rate in beats per minute.
|
/// The position of attractors (P, Q, R, S, T) above or below the z=0 plane.
|
||||||
let hrMean: Double = 75.0
|
let a: [Double] = [1.2, -5, 30, -7.5, 0.75]
|
||||||
|
|
||||||
/// The standard deviation of the heart rate.
|
/// Widths of the attractors (P, Q, R, S, T).
|
||||||
let hrStd: Double = 1.0
|
let b: [Double] = [0.25, 0.1, 0.1, 0.1, 0.4]
|
||||||
}
|
}
|
||||||
|
|
||||||
func stdev(_ data: [Double]) -> Double {
|
func stdev(_ data: [Double]) -> Double {
|
||||||
@@ -64,31 +64,85 @@ func stdev(_ data: [Double]) -> Double {
|
|||||||
return sqrt(data.lazy.map { ($0 - mean) * ($0 - mean) }.reduce(0.0, +) / (n - 1))
|
return sqrt(data.lazy.map { ($0 - mean) * ($0 - mean) }.reduce(0.0, +) / (n - 1))
|
||||||
}
|
}
|
||||||
|
|
||||||
public struct RRProcess: ~Copyable {
|
public struct RRSeries<T: BinaryFloatingPoint> {
|
||||||
|
public let timeParameters: TimeParameters
|
||||||
|
public let rrParamaters: RRParameters
|
||||||
|
let rng: RandomNumberGenerator
|
||||||
|
|
||||||
|
struct Segment {
|
||||||
|
let end: T
|
||||||
|
let value: T
|
||||||
|
}
|
||||||
|
let segments: [Segment]
|
||||||
|
let count: Int
|
||||||
|
|
||||||
|
public init(timeParameters: TimeParameters, rrParamaters: RRParameters, rng: RandomNumberGenerator, signal: [T]) {
|
||||||
|
self.timeParameters = timeParameters
|
||||||
|
self.rrParamaters = rrParamaters
|
||||||
|
self.rng = rng
|
||||||
|
|
||||||
|
let dt = 1.0 / T(timeParameters.sfInternal)
|
||||||
|
|
||||||
|
var rrn = [Segment]()
|
||||||
|
// generate piecewise RR time series
|
||||||
|
do {
|
||||||
|
var tecg = T.zero
|
||||||
|
var i = 0
|
||||||
|
while i < signal.count {
|
||||||
|
tecg += signal[i]
|
||||||
|
rrn.append(Segment(end: tecg, value: signal[i]))
|
||||||
|
i = Int((tecg / dt).rounded(.toNearestOrEven)) + 1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
segments = rrn
|
||||||
|
count = signal.count
|
||||||
|
}
|
||||||
|
|
||||||
|
public func valueAt(_ t: T) -> T {
|
||||||
|
let index = min(segments.partitioningIndex { t < $0.end }, segments.endIndex - 1)
|
||||||
|
return segments[index].value
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
public struct RRGenerator: ~Copyable {
|
||||||
let nrr: Int
|
let nrr: Int
|
||||||
let sfInternal: Int
|
|
||||||
|
|
||||||
let fft: FFT<Double>
|
let fft: FFT<Double>
|
||||||
let spectrum: Buffer<Complex<Double>>
|
let spectrum: Buffer<Complex<Double>>
|
||||||
let signal: Buffer<Double>
|
let signal: Buffer<Double>
|
||||||
|
|
||||||
|
var rng: RandomNumberGenerator
|
||||||
|
|
||||||
// mean and standard deviation of RR intervals
|
// mean and standard deviation of RR intervals
|
||||||
let rrMean: Double
|
let rrMean: Double
|
||||||
let rrStd: Double
|
let rrStd: Double
|
||||||
|
|
||||||
|
let timeParameters: TimeParameters
|
||||||
|
|
||||||
public init(params: TimeParameters) {
|
public init(params: TimeParameters) {
|
||||||
sfInternal = params.sfInternal
|
typealias FFT = PFFFT.FFT<Double>
|
||||||
|
|
||||||
|
let sfInternal = params.sfInternal
|
||||||
rrMean = 60.0 / params.hrMean
|
rrMean = 60.0 / params.hrMean
|
||||||
rrStd = 60.0 * params.hrStd / (params.hrMean * params.hrMean)
|
rrStd = 60.0 * params.hrStd / (params.hrMean * params.hrMean)
|
||||||
|
|
||||||
nrr = Int(pow(2.0, ceil(log2(Double(params.numBeats * sfInternal) * rrMean))))
|
nrr = FFT.nearestValidSize(params.numBeats * sfInternal * Int(rrMean.rounded(.up)), higher: true)
|
||||||
|
fft = try! FFT(n: nrr)
|
||||||
fft = try! FFT<Double>(n: nrr)
|
|
||||||
spectrum = fft.makeSpectrumBuffer(extra: 1)
|
spectrum = fft.makeSpectrumBuffer(extra: 1)
|
||||||
signal = fft.makeSignalBuffer()
|
signal = fft.makeSignalBuffer()
|
||||||
|
|
||||||
|
timeParameters = params
|
||||||
|
rng = Xoshiro256Plus(seed: params.seed)
|
||||||
}
|
}
|
||||||
|
|
||||||
public func generate(params: Parameters) -> [Double] {
|
public mutating func generateSeries(params: RRParameters) -> RRSeries<Double> {
|
||||||
|
let rr = generateSignal(params: params)
|
||||||
|
return RRSeries(timeParameters: timeParameters, rrParamaters: params, rng: rng, signal: rr)
|
||||||
|
}
|
||||||
|
|
||||||
|
public mutating func generateSignal(params: RRParameters) -> [Double] {
|
||||||
let w1 = 2.0 * .pi * params.flo
|
let w1 = 2.0 * .pi * params.flo
|
||||||
let w2 = 2.0 * .pi * params.fhi
|
let w2 = 2.0 * .pi * params.fhi
|
||||||
let c1 = 2.0 * .pi * params.flostd
|
let c1 = 2.0 * .pi * params.flostd
|
||||||
@@ -97,12 +151,10 @@ public struct RRProcess: ~Copyable {
|
|||||||
let sig2 = 1.0
|
let sig2 = 1.0
|
||||||
let sig1 = params.lfhfRatio
|
let sig1 = params.lfhfRatio
|
||||||
|
|
||||||
let sf = Double(sfInternal)
|
let sf = Double(timeParameters.sfInternal)
|
||||||
|
|
||||||
let dw = (sf / Double(nrr)) * 2.0 * .pi
|
let dw = (sf / Double(nrr)) * 2.0 * .pi
|
||||||
|
|
||||||
var rng = Xoshiro256Plus(seed: params.seed)
|
|
||||||
|
|
||||||
spectrum.mapInPlaceSwapLast { i in
|
spectrum.mapInPlaceSwapLast { i in
|
||||||
let w = dw * Double(i)
|
let w = dw * Double(i)
|
||||||
|
|
||||||
@@ -131,70 +183,28 @@ public struct RRProcess: ~Copyable {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
public struct Generator: ~Copyable {
|
public struct Generator {
|
||||||
let rrp: RRProcess
|
|
||||||
|
|
||||||
let hrFact: Double
|
public static func generate(params: Parameters, rrSeries: RRSeries<Double>) -> [Double] {
|
||||||
let hrFactSqrt: Double
|
var rng = rrSeries.rng
|
||||||
|
let sfInternal = rrSeries.timeParameters.sfInternal
|
||||||
|
let dt = 1.0 / Double(sfInternal)
|
||||||
|
|
||||||
let dt: Double
|
let hrFact = 60.0 / rrSeries.timeParameters.hrMean
|
||||||
|
let hrFactSqrt = sqrt(hrFact)
|
||||||
|
|
||||||
|
|
||||||
let timeParams: TimeParameters
|
|
||||||
|
|
||||||
public init(params: TimeParameters) {
|
|
||||||
rrp = RRProcess(params: params)
|
|
||||||
|
|
||||||
// stretching factors for intervals based on Bazett's formula
|
|
||||||
hrFact = sqrt(params.hrMean / 60)
|
|
||||||
hrFactSqrt = sqrt(hrFact)
|
|
||||||
|
|
||||||
// init time scales
|
|
||||||
dt = 1.0 / Double(params.sfInternal)
|
|
||||||
|
|
||||||
timeParams = params
|
|
||||||
}
|
|
||||||
|
|
||||||
public func compute(params: Parameters) -> [Double] {
|
|
||||||
let ai = params.a
|
let ai = params.a
|
||||||
let bi = params.b.map { $0 * hrFact }
|
let bi = params.b.map { $0 * hrFact }
|
||||||
// adjust extrema parameters for mean heart rate
|
// adjust extrema parameters for mean heart rate
|
||||||
let ti = zip([hrFactSqrt, hrFact, 1, hrFact, hrFactSqrt], params.theta).map(*)
|
let ti = zip([hrFactSqrt, hrFact, 1, hrFact, hrFactSqrt], params.theta).map(*)
|
||||||
|
|
||||||
let sfInternal = timeParams.sfInternal
|
let fhi = rrSeries.rrParamaters.fhi
|
||||||
|
|
||||||
let rr = rrp.generate(params: params)
|
let nt = rrSeries.count
|
||||||
|
|
||||||
let fhi = params.fhi
|
|
||||||
|
|
||||||
let dt = self.dt
|
|
||||||
|
|
||||||
// generate piecewise RR
|
|
||||||
let rrpc = [Double](unsafeUninitializedCapacity: rr.count * 2) { rrpc, count in
|
|
||||||
var tecg = 0.0
|
|
||||||
var i = 0
|
|
||||||
var j = 0
|
|
||||||
while i < rr.count {
|
|
||||||
tecg += rr[i]
|
|
||||||
j = Int((tecg / dt).rounded(.toNearestOrEven))
|
|
||||||
for k in i ... j {
|
|
||||||
rrpc[k] = rr[i]
|
|
||||||
}
|
|
||||||
i = j + 1
|
|
||||||
}
|
|
||||||
count = i
|
|
||||||
}
|
|
||||||
print("rrpc: \(rrpc.count)")
|
|
||||||
|
|
||||||
let nt = rr.count
|
|
||||||
|
|
||||||
let x0 = SIMD3<Double>(1.0, 0.0, 0.04)
|
let x0 = SIMD3<Double>(1.0, 0.0, 0.04)
|
||||||
|
|
||||||
var mip = 0
|
|
||||||
var mt2 = 0.0
|
|
||||||
|
|
||||||
let ts = (0 ..< nt).map { Double($0) * dt }
|
let ts = (0 ..< nt).map { Double($0) * dt }
|
||||||
print("ts: \(ts.count) \(ts.last!)")
|
|
||||||
|
|
||||||
let result = SIMD3<Double>.integrate(over: ts, y0: x0, tol: 1e-6) { x, t in
|
let result = SIMD3<Double>.integrate(over: ts, y0: x0, tol: 1e-6) { x, t in
|
||||||
let ta = atan2(x[1], x[0])
|
let ta = atan2(x[1], x[0])
|
||||||
@@ -202,54 +212,35 @@ public struct Generator: ~Copyable {
|
|||||||
let r0 = 1.0
|
let r0 = 1.0
|
||||||
let a0 = 1.0 - sqrt(x[0] * x[0] + x[1] * x[1]) / r0
|
let a0 = 1.0 - sqrt(x[0] * x[0] + x[1] * x[1]) / r0
|
||||||
|
|
||||||
let ip = Int(floor(t * Double(sfInternal)))
|
let w0 = 2 * .pi / rrSeries.valueAt(t)
|
||||||
mip = max(ip, mip)
|
|
||||||
mt2 = max(t, mt2)
|
|
||||||
//print("ip: \(ip) mip: \(mip) mt2: \(mt2)")
|
|
||||||
|
|
||||||
let w0 = 2 * .pi / rrpc[ip]
|
|
||||||
|
|
||||||
let zbase = 0.005 * sin(2 * .pi * fhi * t)
|
let zbase = 0.005 * sin(2 * .pi * fhi * t)
|
||||||
|
|
||||||
var dxdt = SIMD3<Double>()
|
var dxdt = SIMD3<Double>(a0 * x[0] - w0 * x[1], a0 * x[1] + w0 * x[0], 0.0)
|
||||||
|
|
||||||
dxdt[0] = a0 * x[0] - w0 * x[1]
|
|
||||||
dxdt[1] = a0 * x[1] + w0 * x[0]
|
|
||||||
|
|
||||||
dxdt[2] = 0.0
|
|
||||||
|
|
||||||
for i in 0 ..< ti.count {
|
for i in 0 ..< ti.count {
|
||||||
let dt = remainder(ta - ti[i], 2 * .pi)
|
let dt = remainder(ta - ti[i], 2 * .pi)
|
||||||
let dt² = dt * dt
|
|
||||||
|
|
||||||
dxdt[2] += -ai[i] * dt * exp(-0.5 * dt² / (bi[i] * bi[i]))
|
dxdt[2] += -ai[i] * dt * exp(-0.5 * (dt * dt) / (bi[i] * bi[i]))
|
||||||
}
|
}
|
||||||
dxdt[2] += -1.0 * (x[2] - zbase)
|
dxdt[2] += -1.0 * (x[2] - zbase)
|
||||||
|
|
||||||
return dxdt
|
return dxdt
|
||||||
}
|
}
|
||||||
|
|
||||||
print("mip: \(mip)")
|
|
||||||
|
|
||||||
// downsample to ECG sampling frequency
|
// downsample to ECG sampling frequency
|
||||||
let qstep = sfInternal / timeParams.sfEcg
|
let qstep = sfInternal / rrSeries.timeParameters.sfEcg
|
||||||
var zresult = stride(from: 0, to: nt, by: qstep).map { result[$0][2] }
|
var zresult = stride(from: 0, to: nt, by: qstep).map { result[$0][2] }
|
||||||
|
|
||||||
let (zmin, zmax) = zresult.minAndMax()!
|
let (zmin, zmax) = zresult.minAndMax()!
|
||||||
let zrange = zmax - zmin
|
let zrange = zmax - zmin
|
||||||
|
|
||||||
var rng = Xoshiro256Plus(seed: params.seed + 1)
|
|
||||||
|
|
||||||
// Scale signal between -0.4 and 1.2 mV
|
// Scale signal between -0.4 and 1.2 mV
|
||||||
// add uniformly distributed measurement noise
|
// add uniformly distributed measurement noise
|
||||||
for i in 0 ..< zresult.count {
|
for i in 0 ..< zresult.count {
|
||||||
zresult[i] = 1.6 * (zresult[i] - zmin) / zrange - 0.4
|
zresult[i] = (params.range.1 - params.range.0) * (zresult[i] - zmin) / zrange - params.range.0
|
||||||
zresult[i] += params.aNoise * (2.0 * rng.nextDouble() - 1.0)
|
zresult[i] += params.aNoise * (2.0 * rng.nextDouble() - 1.0)
|
||||||
}
|
}
|
||||||
|
|
||||||
// write zresult to text/CSV file
|
|
||||||
let filename = "ecg.csv"
|
|
||||||
try! zresult[0 ..< 800].lazy.map { String($0) }.joined(separator: "\n").write(to: URL(fileURLWithPath: filename), atomically: true, encoding: .utf8)
|
|
||||||
return zresult
|
return zresult
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
9
Sources/EcgSynKit/RandomNumberGenerator.swift
Normal file
9
Sources/EcgSynKit/RandomNumberGenerator.swift
Normal file
@@ -0,0 +1,9 @@
|
|||||||
|
extension RandomNumberGenerator {
|
||||||
|
mutating func nextDouble() -> Double {
|
||||||
|
Double(next() >> 11) * 0x1.0p-53
|
||||||
|
}
|
||||||
|
|
||||||
|
mutating func nextFloat() -> Float {
|
||||||
|
Float(next() >> 40) * 0x1.0p-24
|
||||||
|
}
|
||||||
|
}
|
||||||
@@ -56,8 +56,4 @@ struct Xoshiro256Plus: RandomNumberGenerator {
|
|||||||
|
|
||||||
return result
|
return result
|
||||||
}
|
}
|
||||||
|
|
||||||
public mutating func nextDouble() -> Double {
|
|
||||||
Float64(next() >> 11) * 0x1.0p-53
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -2,16 +2,19 @@ import Testing
|
|||||||
@testable import EcgSynKit
|
@testable import EcgSynKit
|
||||||
import PFFFT
|
import PFFFT
|
||||||
import ComplexModule
|
import ComplexModule
|
||||||
|
import Foundation
|
||||||
|
|
||||||
@Test func fftTest () {
|
@Test func fftTest () {
|
||||||
let p0 = TimeParameters()
|
let timeParameters = TimeParameters()
|
||||||
let c = Generator(params: p0)
|
let rrParameters = RRParameters()
|
||||||
let p = Parameters()
|
|
||||||
let z = c.compute(params: p)
|
|
||||||
|
|
||||||
// print("z: \(z)")
|
var rrg = RRGenerator(params: timeParameters)
|
||||||
print("PFFFT.simdArch: \(FFT<Complex<Float32>>.simdArch)")
|
|
||||||
//fft(data: &a, isign: -1)
|
let parameters = Parameters()
|
||||||
//print("out: \(rr)")
|
let ecg = Generator.generate(params: parameters, rrSeries: rrg.generateSeries(params: rrParameters))
|
||||||
|
// write ecg to file
|
||||||
|
let url = URL(fileURLWithPath: "ecg.txt")
|
||||||
|
let ecgString = ecg.map { String($0) }.joined(separator: "\n")
|
||||||
|
try! ecgString.write(to: url, atomically: true, encoding: .utf8)
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|||||||
Reference in New Issue
Block a user