Files
EcgSynKit/Sources/ECGSynKit/ECGSyn.swift
2024-11-04 10:48:09 -06:00

106 lines
3.5 KiB
Swift

import Foundation
import OdeInt
import RealModule
public struct ECGSyn {
public struct Attractor {
/// Angle of attractor in radians
public let θ: Double
/// Position of extremum above or below the z=0 plane.
public let a: Double
/// Width of the attractor.
public let b: Double
/// Angle rate factor adjustment `θ * pow(hrMean / 60.0, θrf)`
public let θrf: Double
public init(θ: Double, a: Double, b: Double, θrf: Double = 0.0) {
self.θ = θ
self.a = a
self.b = b
self.θrf = θrf
}
public init(deg: Double, a: Double, b: Double, θrf: Double = 0.0) {
self.init(θ: deg * .pi / 180, a: a, b: b, θrf: θrf)
}
static func make(deg: Double, _ a: Double, _ b: Double, _ θrf: Double = 0.0) -> Attractor {
Attractor(deg: deg, a: a, b: b, θrf: θrf)
}
}
public struct Parameters {
/// The ECG amplitude in mV.
public let range: (Double, Double) = (-0.4, 1.2)
/// Amplitude of the noise.
public let noiseAmplitude: Double = 0.0
/// Descriptors of the extrema/attractors for the dynamical model.
public let attractors: [Attractor] = [
.make(deg: -70, 1.2, 0.25, 0.25),
.make(deg: -15, -5.0, 0.1, 0.5),
.make(deg: 0, 30, 0.1),
.make(deg: 15, -7.5, 0.1, 0.5),
.make(deg: 100, 0.75, 0.4, 0.25),
]
}
public static func generate(params: Parameters, rrSeries: ECGSynRRSeries<Double>) -> [Double] {
var rng = rrSeries.rng
let srInternal = rrSeries.timeParameters.srInternal
let hrSec = rrSeries.timeParameters.hrMean / 60.0
let hrFact = sqrt(hrSec)
// adjust extrema parameters for mean heart rate
let ti = params.attractors.map { $0.θ * pow(hrSec, $0.θrf) }
let ai = params.attractors.map { $0.a }
let bi = params.attractors.map { $0.b * hrFact }
let fhi = rrSeries.rrParamaters.fhi
let nt = rrSeries.count
let dt = 1.0 / Double(srInternal)
let ts = (0 ..< nt).map { Double($0) * dt }
let x0 = SIMD3<Double>(1.0, 0.0, 0.04)
let result = SIMD3<Double>.integrate(over: ts, y0: x0, tol: 1e-6) { x, t in
let ta = atan2(x[1], x[0])
let r0 = 1.0
let a0 = 1.0 - sqrt(x[0] * x[0] + x[1] * x[1]) / r0
let w0 = 2 * .pi / rrSeries.valueAt(t)
let zbase = 0.005 * sin(2 * .pi * fhi * t)
var dxdt = SIMD3<Double>(a0 * x[0] - w0 * x[1], a0 * x[1] + w0 * x[0], 0.0)
for i in 0 ..< ti.count {
let dt = remainder(ta - ti[i], 2 * .pi)
dxdt[2] += -ai[i] * dt * exp(-0.5 * (dt * dt) / (bi[i] * bi[i]))
}
dxdt[2] += -1.0 * (x[2] - zbase)
return dxdt
}
// extract z and downsample to output sampling frequency
var zresult = stride(from: 0, to: nt, by: rrSeries.timeParameters.decimateFactor).map { result[$0][2] }
let (zmin, zmax) = zresult.minAndMax()!
let zrange = zmax - zmin
// Scale signal between -0.4 and 1.2 mV
// add uniformly distributed measurement noise
for i in 0 ..< zresult.count {
zresult[i] = (params.range.1 - params.range.0) * (zresult[i] - zmin) / zrange + params.range.0
zresult[i] += params.noiseAmplitude * (2.0 * rng.nextDouble() - 1.0)
}
return zresult
}
}