mirror of
https://github.com/jkl1337/duplicacy.git
synced 2026-01-02 11:44:45 -06:00
Implement Erasure Coding
This commit is contained in:
@@ -22,6 +22,8 @@ import (
|
||||
"runtime"
|
||||
|
||||
"github.com/bkaradzic/go-lz4"
|
||||
"github.com/minio/highwayhash"
|
||||
"github.com/klauspost/reedsolomon"
|
||||
)
|
||||
|
||||
// A chunk needs to acquire a new buffer and return the old one for every encrypt/decrypt operation, therefore
|
||||
@@ -68,11 +70,13 @@ type Chunk struct {
|
||||
}
|
||||
|
||||
// Magic word to identify a duplicacy format encrypted file, plus a version number.
|
||||
var ENCRYPTION_HEADER = "duplicacy\000"
|
||||
var ENCRYPTION_BANNER = "duplicacy\000"
|
||||
|
||||
// RSA encrypted chunks start with "duplicacy\002"
|
||||
var ENCRYPTION_VERSION_RSA byte = 2
|
||||
|
||||
var ERASURE_CODING_BANNER = "duplicacy\003"
|
||||
|
||||
// CreateChunk creates a new chunk.
|
||||
func CreateChunk(config *Config, bufferNeeded bool) *Chunk {
|
||||
|
||||
@@ -224,7 +228,7 @@ func (chunk *Chunk) Encrypt(encryptionKey []byte, derivationKey string, isSnapsh
|
||||
// Start with the magic number and the version number.
|
||||
if usingRSA {
|
||||
// RSA encryption starts "duplicacy\002"
|
||||
encryptedBuffer.Write([]byte(ENCRYPTION_HEADER)[:len(ENCRYPTION_HEADER) - 1])
|
||||
encryptedBuffer.Write([]byte(ENCRYPTION_BANNER)[:len(ENCRYPTION_BANNER) - 1])
|
||||
encryptedBuffer.Write([]byte{ENCRYPTION_VERSION_RSA})
|
||||
|
||||
// Then the encrypted key
|
||||
@@ -235,7 +239,7 @@ func (chunk *Chunk) Encrypt(encryptionKey []byte, derivationKey string, isSnapsh
|
||||
binary.Write(encryptedBuffer, binary.LittleEndian, uint16(len(encryptedKey)))
|
||||
encryptedBuffer.Write(encryptedKey)
|
||||
} else {
|
||||
encryptedBuffer.Write([]byte(ENCRYPTION_HEADER))
|
||||
encryptedBuffer.Write([]byte(ENCRYPTION_BANNER))
|
||||
}
|
||||
|
||||
// Followed by the nonce
|
||||
@@ -248,7 +252,7 @@ func (chunk *Chunk) Encrypt(encryptionKey []byte, derivationKey string, isSnapsh
|
||||
offset = encryptedBuffer.Len()
|
||||
}
|
||||
|
||||
// offset is either 0 or the length of header + nonce
|
||||
// offset is either 0 or the length of banner + nonce
|
||||
|
||||
if chunk.config.CompressionLevel >= -1 && chunk.config.CompressionLevel <= 9 {
|
||||
deflater, _ := zlib.NewWriterLevel(encryptedBuffer, chunk.config.CompressionLevel)
|
||||
@@ -273,26 +277,79 @@ func (chunk *Chunk) Encrypt(encryptionKey []byte, derivationKey string, isSnapsh
|
||||
return fmt.Errorf("Invalid compression level: %d", chunk.config.CompressionLevel)
|
||||
}
|
||||
|
||||
if len(encryptionKey) == 0 {
|
||||
chunk.buffer, encryptedBuffer = encryptedBuffer, chunk.buffer
|
||||
return nil
|
||||
if len(encryptionKey) > 0 {
|
||||
|
||||
// PKCS7 is used. The sizes of compressed chunks leak information about the original chunks so we want the padding sizes
|
||||
// to be the maximum allowed by PKCS7
|
||||
dataLength := encryptedBuffer.Len() - offset
|
||||
paddingLength := 256 - dataLength%256
|
||||
|
||||
encryptedBuffer.Write(bytes.Repeat([]byte{byte(paddingLength)}, paddingLength))
|
||||
encryptedBuffer.Write(bytes.Repeat([]byte{0}, gcm.Overhead()))
|
||||
|
||||
// The encrypted data will be appended to the duplicacy banner and the once.
|
||||
encryptedBytes := gcm.Seal(encryptedBuffer.Bytes()[:offset], nonce,
|
||||
encryptedBuffer.Bytes()[offset:offset+dataLength+paddingLength], nil)
|
||||
|
||||
encryptedBuffer.Truncate(len(encryptedBytes))
|
||||
}
|
||||
|
||||
// PKCS7 is used. Compressed chunk sizes leaks information about the original chunks so we want the padding sizes
|
||||
// to be the maximum allowed by PKCS7
|
||||
dataLength := encryptedBuffer.Len() - offset
|
||||
paddingLength := 256 - dataLength%256
|
||||
if chunk.config.DataShards == 0 || chunk.config.ParityShards == 0 {
|
||||
chunk.buffer, encryptedBuffer = encryptedBuffer, chunk.buffer
|
||||
return
|
||||
}
|
||||
|
||||
encryptedBuffer.Write(bytes.Repeat([]byte{byte(paddingLength)}, paddingLength))
|
||||
encryptedBuffer.Write(bytes.Repeat([]byte{0}, gcm.Overhead()))
|
||||
// Start erasure coding
|
||||
encoder, err := reedsolomon.New(chunk.config.DataShards, chunk.config.ParityShards)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
chunkSize := len(encryptedBuffer.Bytes())
|
||||
shardSize := (chunkSize + chunk.config.DataShards - 1) / chunk.config.DataShards
|
||||
// Append zeros to make the last shard to have the same size as other
|
||||
encryptedBuffer.Write(make([]byte, shardSize * chunk.config.DataShards - chunkSize))
|
||||
// Grow the buffer for parity shards
|
||||
encryptedBuffer.Grow(shardSize * chunk.config.ParityShards)
|
||||
// Now create one slice for each shard, reusing the data in the buffer
|
||||
data := make([][]byte, chunk.config.DataShards + chunk.config.ParityShards)
|
||||
for i := 0; i < chunk.config.DataShards + chunk.config.ParityShards; i++ {
|
||||
data[i] = encryptedBuffer.Bytes()[i * shardSize: (i + 1) * shardSize]
|
||||
}
|
||||
// This populates the parity shard
|
||||
encoder.Encode(data)
|
||||
|
||||
// The encrypted data will be appended to the duplicacy header and the once.
|
||||
encryptedBytes := gcm.Seal(encryptedBuffer.Bytes()[:offset], nonce,
|
||||
encryptedBuffer.Bytes()[offset:offset+dataLength+paddingLength], nil)
|
||||
// Prepare the chunk to be uploaded
|
||||
chunk.buffer.Reset()
|
||||
// First the banner
|
||||
chunk.buffer.Write([]byte(ERASURE_CODING_BANNER))
|
||||
// Then the header which includes the chunk size, data/parity and a 2-byte checksum
|
||||
header := make([]byte, 14)
|
||||
binary.LittleEndian.PutUint64(header[0:], uint64(chunkSize))
|
||||
binary.LittleEndian.PutUint16(header[8:], uint16(chunk.config.DataShards))
|
||||
binary.LittleEndian.PutUint16(header[10:], uint16(chunk.config.ParityShards))
|
||||
header[12] = header[0] ^ header[2] ^ header[4] ^ header[6] ^ header[8] ^ header[10]
|
||||
header[13] = header[1] ^ header[3] ^ header[5] ^ header[7] ^ header[9] ^ header[11]
|
||||
chunk.buffer.Write(header)
|
||||
// Calculate the highway hash for each shard
|
||||
hashKey := make([]byte, 32)
|
||||
for _, part := range data {
|
||||
hasher, err := highwayhash.New(hashKey)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
_, err = hasher.Write(part)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
chunk.buffer.Write(hasher.Sum(nil))
|
||||
}
|
||||
|
||||
encryptedBuffer.Truncate(len(encryptedBytes))
|
||||
|
||||
chunk.buffer, encryptedBuffer = encryptedBuffer, chunk.buffer
|
||||
// Copy the data
|
||||
for _, part := range data {
|
||||
chunk.buffer.Write(part)
|
||||
}
|
||||
// Append the header again for redundancy
|
||||
chunk.buffer.Write(header)
|
||||
|
||||
return nil
|
||||
|
||||
@@ -322,7 +379,122 @@ func (chunk *Chunk) Decrypt(encryptionKey []byte, derivationKey string) (err err
|
||||
}()
|
||||
|
||||
chunk.buffer, encryptedBuffer = encryptedBuffer, chunk.buffer
|
||||
headerLength := len(ENCRYPTION_HEADER)
|
||||
bannerLength := len(ENCRYPTION_BANNER)
|
||||
|
||||
if len(encryptedBuffer.Bytes()) > bannerLength && string(encryptedBuffer.Bytes()[:bannerLength]) == ERASURE_CODING_BANNER {
|
||||
|
||||
// The chunk was encoded with erasure coding
|
||||
if len(encryptedBuffer.Bytes()) < bannerLength + 14 {
|
||||
return fmt.Errorf("Erasure coding header truncated (%d bytes)", len(encryptedBuffer.Bytes()))
|
||||
}
|
||||
// Check the header checksum
|
||||
header := encryptedBuffer.Bytes()[bannerLength: bannerLength + 14]
|
||||
if header[12] != header[0] ^ header[2] ^ header[4] ^ header[6] ^ header[8] ^ header[10] ||
|
||||
header[13] != header[1] ^ header[3] ^ header[5] ^ header[7] ^ header[9] ^ header[11] {
|
||||
return fmt.Errorf("Erasure coding header corrupted (%x)", header)
|
||||
}
|
||||
|
||||
// Read the parameters
|
||||
chunkSize := int(binary.LittleEndian.Uint64(header[0:8]))
|
||||
dataShards := int(binary.LittleEndian.Uint16(header[8:10]))
|
||||
parityShards := int(binary.LittleEndian.Uint16(header[10:12]))
|
||||
shardSize := (chunkSize + chunk.config.DataShards - 1) / chunk.config.DataShards
|
||||
// This is the length the chunk file should have
|
||||
expectedLength := bannerLength + 2 * len(header) + (dataShards + parityShards) * (shardSize + 32)
|
||||
// The minimum length that can be recovered from
|
||||
minimumLength := bannerLength + len(header) + (dataShards + parityShards) * 32 + dataShards * shardSize
|
||||
LOG_DEBUG("CHUNK_ERASURECODE", "Chunk size: %d bytes, data size: %d, parity: %d/%d", chunkSize, len(encryptedBuffer.Bytes()), dataShards, parityShards)
|
||||
if len(encryptedBuffer.Bytes()) > expectedLength {
|
||||
LOG_WARN("CHUNK_ERASURECODE", "Chunk has %d bytes (instead of %d)", len(encryptedBuffer.Bytes()), expectedLength)
|
||||
} else if len(encryptedBuffer.Bytes()) == expectedLength {
|
||||
// Correct size; fall through
|
||||
} else if len(encryptedBuffer.Bytes()) > minimumLength {
|
||||
LOG_WARN("CHUNK_ERASURECODE", "Chunk is truncated (%d out of %d bytes)", len(encryptedBuffer.Bytes()), expectedLength)
|
||||
} else {
|
||||
return fmt.Errorf("Not enough chunk data for recovery; chunk size: %d bytes, data size: %d, parity: %d/%d", chunkSize, len(encryptedBuffer.Bytes()), dataShards, parityShards)
|
||||
}
|
||||
|
||||
// Where the hashes start
|
||||
hashOffset := bannerLength + len(header)
|
||||
// Where the data start
|
||||
dataOffset := hashOffset + (dataShards + parityShards) * 32
|
||||
|
||||
data := make([][]byte, dataShards + parityShards)
|
||||
recoveryNeeded := false
|
||||
hashKey := make([]byte, 32)
|
||||
availableShards := 0
|
||||
for i := 0; i < dataShards + parityShards; i++ {
|
||||
start := dataOffset + i * shardSize
|
||||
if start + shardSize > len(encryptedBuffer.Bytes()) {
|
||||
// the current shard is incomplete
|
||||
break
|
||||
}
|
||||
// Now verify the hash
|
||||
hasher, err := highwayhash.New(hashKey)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
_, err = hasher.Write(encryptedBuffer.Bytes()[start: start + shardSize])
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
if bytes.Compare(hasher.Sum(nil), encryptedBuffer.Bytes()[hashOffset + i * 32: hashOffset + (i + 1) * 32]) != 0 {
|
||||
if i < dataShards {
|
||||
recoveryNeeded = true
|
||||
}
|
||||
} else {
|
||||
// The shard is good
|
||||
data[i] = encryptedBuffer.Bytes()[start: start + shardSize]
|
||||
availableShards++
|
||||
if availableShards >= dataShards {
|
||||
// We have enough shards to recover; skip the remaining shards
|
||||
break
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if !recoveryNeeded {
|
||||
// Remove the padding zeros from the last shard
|
||||
encryptedBuffer.Truncate(dataOffset + chunkSize)
|
||||
// Skip the header and hashes
|
||||
encryptedBuffer.Read(encryptedBuffer.Bytes()[:dataOffset])
|
||||
} else {
|
||||
if availableShards < dataShards {
|
||||
return fmt.Errorf("Not enough chunk data for recover; only %d out of %d shards are complete", availableShards, dataShards + parityShards)
|
||||
}
|
||||
|
||||
// Show the validity of shards using a string of * and -
|
||||
slots := ""
|
||||
for _, part := range data {
|
||||
if len(part) != 0 {
|
||||
slots += "*"
|
||||
} else {
|
||||
slots += "-"
|
||||
}
|
||||
}
|
||||
|
||||
LOG_WARN("CHUNK_ERASURECODE", "Recovering a %d byte chunk from %d byte shards: %s", chunkSize, shardSize, slots)
|
||||
encoder, err := reedsolomon.New(dataShards, parityShards)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
err = encoder.Reconstruct(data)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
LOG_DEBUG("CHUNK_ERASURECODE", "Chunk data successfully recovered")
|
||||
buffer := AllocateChunkBuffer()
|
||||
buffer.Reset()
|
||||
for i := 0; i < dataShards; i++ {
|
||||
buffer.Write(data[i])
|
||||
}
|
||||
buffer.Truncate(chunkSize)
|
||||
|
||||
ReleaseChunkBuffer(encryptedBuffer)
|
||||
encryptedBuffer = buffer
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
if len(encryptionKey) > 0 {
|
||||
|
||||
@@ -340,15 +512,15 @@ func (chunk *Chunk) Decrypt(encryptionKey []byte, derivationKey string) (err err
|
||||
key = hasher.Sum(nil)
|
||||
}
|
||||
|
||||
if len(encryptedBuffer.Bytes()) < headerLength + 12 {
|
||||
if len(encryptedBuffer.Bytes()) < bannerLength + 12 {
|
||||
return fmt.Errorf("No enough encrypted data (%d bytes) provided", len(encryptedBuffer.Bytes()))
|
||||
}
|
||||
|
||||
if string(encryptedBuffer.Bytes()[:headerLength-1]) != ENCRYPTION_HEADER[:headerLength-1] {
|
||||
if string(encryptedBuffer.Bytes()[:bannerLength-1]) != ENCRYPTION_BANNER[:bannerLength-1] {
|
||||
return fmt.Errorf("The storage doesn't seem to be encrypted")
|
||||
}
|
||||
|
||||
encryptionVersion := encryptedBuffer.Bytes()[headerLength-1]
|
||||
encryptionVersion := encryptedBuffer.Bytes()[bannerLength-1]
|
||||
if encryptionVersion != 0 && encryptionVersion != ENCRYPTION_VERSION_RSA {
|
||||
return fmt.Errorf("Unsupported encryption version %d", encryptionVersion)
|
||||
}
|
||||
@@ -359,14 +531,14 @@ func (chunk *Chunk) Decrypt(encryptionKey []byte, derivationKey string) (err err
|
||||
return fmt.Errorf("An RSA private key is required to decrypt the chunk")
|
||||
}
|
||||
|
||||
encryptedKeyLength := binary.LittleEndian.Uint16(encryptedBuffer.Bytes()[headerLength:headerLength+2])
|
||||
encryptedKeyLength := binary.LittleEndian.Uint16(encryptedBuffer.Bytes()[bannerLength:bannerLength+2])
|
||||
|
||||
if len(encryptedBuffer.Bytes()) < headerLength + 14 + int(encryptedKeyLength) {
|
||||
if len(encryptedBuffer.Bytes()) < bannerLength + 14 + int(encryptedKeyLength) {
|
||||
return fmt.Errorf("No enough encrypted data (%d bytes) provided", len(encryptedBuffer.Bytes()))
|
||||
}
|
||||
|
||||
encryptedKey := encryptedBuffer.Bytes()[headerLength + 2:headerLength + 2 + int(encryptedKeyLength)]
|
||||
headerLength += 2 + int(encryptedKeyLength)
|
||||
encryptedKey := encryptedBuffer.Bytes()[bannerLength + 2:bannerLength + 2 + int(encryptedKeyLength)]
|
||||
bannerLength += 2 + int(encryptedKeyLength)
|
||||
|
||||
decryptedKey, err := rsa.DecryptOAEP(sha256.New(), rand.Reader, chunk.config.rsaPrivateKey, encryptedKey, nil)
|
||||
if err != nil {
|
||||
@@ -385,8 +557,8 @@ func (chunk *Chunk) Decrypt(encryptionKey []byte, derivationKey string) (err err
|
||||
return err
|
||||
}
|
||||
|
||||
offset = headerLength + gcm.NonceSize()
|
||||
nonce := encryptedBuffer.Bytes()[headerLength:offset]
|
||||
offset = bannerLength + gcm.NonceSize()
|
||||
nonce := encryptedBuffer.Bytes()[bannerLength:offset]
|
||||
|
||||
decryptedBytes, err := gcm.Open(encryptedBuffer.Bytes()[:offset], nonce,
|
||||
encryptedBuffer.Bytes()[offset:], nil)
|
||||
|
||||
Reference in New Issue
Block a user