Files
ljkiwi/ckiwi/ckiwi.cpp
John K. Luebs 08e9bf08e7 Initial implementation of tuple demonstration
This allows allocating a buffer of double pointers pointing to
the memory location in a bunch of variables. It is not particularly
ergonomic as is, and it seems unlikely the real world performance
benefit will exist.
2024-02-27 21:59:10 -06:00

405 lines
10 KiB
C++

#include "ckiwi.h"
#include <kiwi/kiwi.h>
#include <climits>
#include <cstdarg>
#include <cstdlib>
#include <cstring>
#include <string>
#if defined(__GNUC__) && !defined(LJKIWI_NO_BUILTIN)
#define lk_likely(x) (__builtin_expect(((x) != 0), 1))
#define lk_unlikely(x) (__builtin_expect(((x) != 0), 0))
#else
#define lk_likely(x) (x)
#define lk_unlikely(x) (x)
#endif
namespace {
using namespace kiwi;
const KiwiErr* new_error(const KiwiErr* base, const std::exception& ex) {
if (!std::strcmp(ex.what(), base->message))
return base;
const auto msg_n = std::strlen(ex.what()) + 1;
auto* mem = static_cast<char*>(std::malloc(sizeof(KiwiErr) + msg_n));
if (!mem) {
return base;
}
const auto* err = new (mem) KiwiErr {base->kind, mem + sizeof(KiwiErr), true};
std::memcpy(const_cast<char*>(err->message), ex.what(), msg_n);
return err;
}
static const constexpr KiwiErr kKiwiErrUnhandledCxxException {
KiwiErrUnknown,
"An unhandled C++ exception occurred."
};
static const constexpr KiwiErr kKiwiErrNullObjectArg0 {
KiwiErrNullObject,
"null object passed as argument #0 (self)"
};
static const constexpr KiwiErr kKiwiErrNullObjectArg1 {
KiwiErrNullObject,
"null object passed as argument #1"
};
template<typename F>
const KiwiErr* wrap_err(F&& f) {
try {
f();
} catch (const UnsatisfiableConstraint& ex) {
static const constexpr KiwiErr err {
KiwiErrUnsatisfiableConstraint,
"The constraint cannot be satisfied."
};
return &err;
} catch (const UnknownConstraint& ex) {
static const constexpr KiwiErr err {
KiwiErrUnknownConstraint,
"The constraint has not been added to the solver."
};
return &err;
} catch (const DuplicateConstraint& ex) {
static const constexpr KiwiErr err {
KiwiErrDuplicateConstraint,
"The constraint has already been added to the solver."
};
return &err;
} catch (const UnknownEditVariable& ex) {
static const constexpr KiwiErr err {
KiwiErrUnknownEditVariable,
"The edit variable has not been added to the solver."
};
return &err;
} catch (const DuplicateEditVariable& ex) {
static const constexpr KiwiErr err {
KiwiErrDuplicateEditVariable,
"The edit variable has already been added to the solver."
};
return &err;
} catch (const BadRequiredStrength& ex) {
static const constexpr KiwiErr err {
KiwiErrBadRequiredStrength,
"A required strength cannot be used in this context."
};
return &err;
} catch (const InternalSolverError& ex) {
static const constexpr KiwiErr base {
KiwiErrInternalSolverError,
"An internal solver error occurred."
};
return new_error(&base, ex);
} catch (std::bad_alloc&) {
static const constexpr KiwiErr err {KiwiErrAlloc, "A memory allocation failed."};
return &err;
} catch (const std::exception& ex) {
return new_error(&kKiwiErrUnhandledCxxException, ex);
} catch (...) {
return &kKiwiErrUnhandledCxxException;
}
return nullptr;
}
template<typename P, typename R, typename F>
const KiwiErr* wrap_err(P self, F&& f) {
if (lk_unlikely(!self)) {
return &kKiwiErrNullObjectArg0;
}
return wrap_err([&]() { f(self->solver); });
}
template<typename P, typename R, typename F>
const KiwiErr* wrap_err(P* self, R* item, F&& f) {
if (lk_unlikely(!self)) {
return &kKiwiErrNullObjectArg0;
} else if (lk_unlikely(!item)) {
return &kKiwiErrNullObjectArg1;
}
return wrap_err([&]() { f(self->solver, item); });
}
template<typename T, typename... Args>
T* make_unmanaged(Args... args) {
auto* o = new T(std::forward<Args>(args)...);
o->m_refcount = 1;
return o;
}
template<typename T>
void release_unmanaged(T* p) {
if (lk_likely(p)) {
if (--p->m_refcount == 0)
delete p;
}
}
template<typename T>
T* retain_unmanaged(T* p) {
if (lk_likely(p))
p->m_refcount++;
return p;
}
} // namespace
extern "C" {
KiwiVar* kiwi_var_construct(const char* name) {
return make_unmanaged<VariableData>(lk_likely(name) ? name : "");
}
void kiwi_var_release(KiwiVar* var) {
release_unmanaged(var);
}
void kiwi_var_retain(KiwiVar* var) {
retain_unmanaged(var);
}
const char* kiwi_var_name(const KiwiVar* var) {
return lk_likely(var) ? var->name().c_str() : "(<null>)";
}
void kiwi_var_set_name(KiwiVar* var, const char* name) {
if (lk_likely(var && name))
var->setName(name);
}
double kiwi_var_value(const KiwiVar* var) {
return lk_likely(var) ? var->value() : std::numeric_limits<double>::quiet_NaN();
}
void kiwi_var_set_value(KiwiVar* var, double value) {
if (lk_likely(var))
var->setValue(value);
}
void kiwi_expression_retain(KiwiExpression* expr) {
if (lk_unlikely(!expr))
return;
for (auto* t = expr->terms_; t != expr->terms_ + expr->term_count; ++t) {
retain_unmanaged(t->var);
}
expr->owner = expr;
}
void kiwi_expression_destroy(KiwiExpression* expr) {
if (lk_unlikely(!expr || !expr->owner))
return;
if (expr->owner == expr) {
for (auto* t = expr->terms_; t != expr->terms_ + expr->term_count; ++t) {
release_unmanaged(t->var);
}
} else {
release_unmanaged(static_cast<ConstraintData*>(expr->owner));
}
}
KiwiConstraint* kiwi_constraint_construct(
const KiwiExpression* lhs,
const KiwiExpression* rhs,
enum KiwiRelOp op,
double strength
) {
if (strength < 0.0) {
strength = kiwi::strength::required;
}
std::vector<Term> terms;
terms.reserve(static_cast<decltype(terms)::size_type>(
(lhs && lhs->term_count > 0 ? lhs->term_count : 0)
+ (rhs && rhs->term_count > 0 ? rhs->term_count : 0)
));
if (lhs) {
for (int i = 0; i < lhs->term_count; ++i) {
const auto& t = lhs->terms_[i];
if (t.var)
terms.emplace_back(Variable(t.var), t.coefficient);
}
}
if (rhs) {
for (int i = 0; i < rhs->term_count; ++i) {
const auto& t = rhs->terms_[i];
if (t.var)
terms.emplace_back(Variable(t.var), -t.coefficient);
}
}
return make_unmanaged<ConstraintData>(
Expression(std::move(terms), (lhs ? lhs->constant : 0.0) - (rhs ? rhs->constant : 0.0)),
static_cast<RelationalOperator>(op),
strength
);
}
void kiwi_constraint_release(KiwiConstraint* c) {
release_unmanaged(c);
}
void kiwi_constraint_retain(KiwiConstraint* c) {
retain_unmanaged(c);
}
double kiwi_constraint_strength(const KiwiConstraint* c) {
return lk_likely(c) ? c->strength() : std::numeric_limits<double>::quiet_NaN();
}
enum KiwiRelOp kiwi_constraint_op(const KiwiConstraint* c) {
return lk_likely(c) ? static_cast<KiwiRelOp>(c->op()) : KiwiRelOp::KIWI_OP_EQ;
}
bool kiwi_constraint_violated(const KiwiConstraint* c) {
return lk_likely(c) ? c->violated() : false;
}
int kiwi_constraint_expression(KiwiConstraint* c, KiwiExpression* out, int out_size) {
if (lk_unlikely(!c))
return 0;
const auto& expr = c->expression();
const auto& terms = expr.terms();
int n = terms.size() < INT_MAX ? static_cast<int>(terms.size()) : INT_MAX;
if (!out || out_size < n)
return n;
for (int i = 0; i < n; ++i) {
const auto& t = terms[static_cast<std::size_t>(i)];
out->terms_[i].var = const_cast<Variable&>(t.variable()).ptr();
out->terms_[i].coefficient = t.coefficient();
}
out->constant = expr.constant();
out->term_count = n;
out->owner = retain_unmanaged(c);
return n;
}
struct KiwiSolver {
unsigned error_mask;
Solver solver;
};
KiwiSolver* kiwi_solver_construct(unsigned error_mask) {
return new KiwiSolver {error_mask};
}
void kiwi_solver_destroy(KiwiSolver* s) {
if (lk_likely(s))
delete s;
}
unsigned kiwi_solver_get_error_mask(const KiwiSolver* s) {
return lk_likely(s) ? s->error_mask : 0;
}
void kiwi_solver_set_error_mask(KiwiSolver* s, unsigned mask) {
if (lk_likely(s))
s->error_mask = mask;
}
const KiwiErr* kiwi_solver_add_constraint(KiwiSolver* s, KiwiConstraint* constraint) {
return wrap_err(s, constraint, [](auto&& s, auto&& c) { s.addConstraint(Constraint(c)); });
}
const KiwiErr* kiwi_solver_remove_constraint(KiwiSolver* s, KiwiConstraint* constraint) {
return wrap_err(s, constraint, [](auto&& s, auto&& c) { s.removeConstraint(Constraint(c)); });
}
bool kiwi_solver_has_constraint(const KiwiSolver* s, KiwiConstraint* constraint) {
if (lk_unlikely(!s || !constraint))
return 0;
return s->solver.hasConstraint(Constraint(constraint));
}
const KiwiErr* kiwi_solver_add_edit_var(KiwiSolver* s, KiwiVar* var, double strength) {
return wrap_err(s, var, [strength](auto&& s, auto&& v) {
s.addEditVariable(Variable(v), strength);
});
}
const KiwiErr* kiwi_solver_remove_edit_var(KiwiSolver* s, KiwiVar* var) {
return wrap_err(s, var, [](auto&& s, auto&& v) { s.removeEditVariable(Variable(v)); });
}
bool kiwi_solver_has_edit_var(const KiwiSolver* s, KiwiVar* var) {
if (lk_unlikely(!s || !var))
return 0;
return s->solver.hasEditVariable(Variable(var));
}
const KiwiErr* kiwi_solver_suggest_value(KiwiSolver* s, KiwiVar* var, double value) {
return wrap_err(s, var, [value](auto&& s, auto&& v) { s.suggestValue(Variable(v), value); });
}
void kiwi_solver_update_vars(KiwiSolver* s) {
if (lk_likely(s))
s->solver.updateVariables();
}
void kiwi_solver_reset(KiwiSolver* s) {
if (lk_likely(s))
s->solver.reset();
}
void kiwi_solver_dump(const KiwiSolver* s) {
if (lk_likely(s))
s->solver.dump();
}
char* kiwi_solver_dumps(const KiwiSolver* s) {
if (lk_unlikely(!s))
return nullptr;
const auto& str = s->solver.dumps();
const auto buf_size = str.size() + 1;
auto* buf = static_cast<char*>(std::malloc(buf_size));
if (!buf)
return nullptr;
std::memcpy(buf, str.c_str(), str.size() + 1);
return buf;
}
void kiwi_tuple_init(KiwiTuple* tuple, int count, ...) {
if (lk_unlikely(!tuple))
return;
va_list args;
va_start(args, count);
for (int i = 0; i < count; ++i) {
auto* var = va_arg(args, KiwiVar*);
retain_unmanaged(var);
tuple->values[i] = &var->m_value;
}
tuple->count = count;
va_end(args);
}
void kiwi_tuple_destroy(KiwiTuple* tuple) {
if (lk_unlikely(!tuple))
return;
for (int i = 0; i < tuple->count; ++i) {
auto* value = const_cast<double*>(tuple->values[i]);
release_unmanaged(
reinterpret_cast<KiwiVar*>(reinterpret_cast<char*>(value) - offsetof(KiwiVar, m_value))
);
}
}
} // extern "C"