Files
ljkiwi/kiwi.lua
John K. Luebs e43272487f Guard against most egregious mistakes in calling the library
LuaJIT FFI is not inherently memory safe and there is no way
to completely guard against the caller doing something that
will trample over memory, but we can get pretty close. Biggest
issue is that an empty table will stand-in for a ref struct with
a null ref. So check for that in all the calls. In the calls that
raise errors we now have a specific error for it. In the other
functions the "nil" object is handled quietly but without a nullptr
dereference and hopefully no UB.
2024-02-13 16:58:59 -06:00

813 lines
25 KiB
Lua

local kiwi = {}
local ffi = require("ffi")
local ckiwi
do
local cpath, err = package.searchpath("ckiwi", package.cpath)
if cpath == nil then
error("kiwi dynamic library 'ckiwi' not found\n" .. err)
end
ckiwi = ffi.load(cpath)
end
ffi.cdef([[
enum KiwiErrKind {
KiwiErrNone,
KiwiErrUnsatisfiableConstraint = 1,
KiwiErrUnknownConstraint,
KiwiErrDuplicateConstraint,
KiwiErrUnknownEditVariable,
KiwiErrDuplicateEditVariable,
KiwiErrBadRequiredStrength,
KiwiErrInternalSolverError,
KiwiErrAlloc,
KiwiErrNullObject,
KiwiErrUnknown,
};
enum KiwiRelOp { LE, GE, EQ };
struct KiwiVarRefType;
struct KiwiConstraintRefType;
typedef struct KiwiVarRefType* KiwiVarRef;
typedef struct KiwiConstraintRefType* KiwiConstraintRef;
struct KiwiTerm {
KiwiVarRef var;
double coefficient;
};
typedef struct KiwiExpression {
double constant;
int term_count;
struct KiwiTerm terms_[?];
}* KiwiExpressionPtr;
typedef const struct KiwiExpression* KiwiExpressionConstPtr;
typedef struct KiwiErr {
enum KiwiErrKind kind;
const char* message;
bool must_free;
} const* KiwiErrPtr;
struct KiwiSolver;
typedef struct KiwiSolver* KiwiSolverPtr;
KiwiVarRef kiwi_var_new(const char* name);
void kiwi_var_del(KiwiVarRef var);
const char* kiwi_var_name(KiwiVarRef var);
void kiwi_var_set_name(KiwiVarRef var, const char* name);
double kiwi_var_value(KiwiVarRef var);
void kiwi_var_set_value(KiwiVarRef var, double value);
int kiwi_var_eq(KiwiVarRef var, KiwiVarRef other);
KiwiConstraintRef
kiwi_constraint_new(KiwiExpressionConstPtr expression, enum KiwiRelOp op, double strength);
void kiwi_constraint_del(KiwiConstraintRef constraint);
double kiwi_constraint_strength(KiwiConstraintRef constraint);
enum KiwiRelOp kiwi_constraint_op(KiwiConstraintRef constraint);
bool kiwi_constraint_violated(KiwiConstraintRef constraint);
int kiwi_constraint_expression(KiwiConstraintRef constraint, KiwiExpressionPtr out, int out_size);
KiwiErrPtr kiwi_solver_add_constraint(KiwiSolverPtr sp, KiwiConstraintRef constraint);
KiwiErrPtr kiwi_solver_remove_constraint(KiwiSolverPtr sp, KiwiConstraintRef constraint);
bool kiwi_solver_has_constraint(KiwiSolverPtr sp, KiwiConstraintRef constraint);
KiwiErrPtr kiwi_solver_add_edit_var(KiwiSolverPtr sp, KiwiVarRef var, double strength);
KiwiErrPtr kiwi_solver_remove_edit_var(KiwiSolverPtr sp, KiwiVarRef var);
bool kiwi_solver_has_edit_var(KiwiSolverPtr sp, KiwiVarRef var);
KiwiErrPtr kiwi_solver_suggest_value(KiwiSolverPtr sp, KiwiVarRef var, double value);
void kiwi_solver_update_vars(KiwiSolverPtr sp);
void kiwi_solver_reset(KiwiSolverPtr sp);
void kiwi_solver_dump(KiwiSolverPtr sp);
char* kiwi_solver_dumps(KiwiSolverPtr sp);
KiwiSolverPtr kiwi_solver_new();
void kiwi_solver_del(KiwiSolverPtr sp);
void free(void *);
]])
local strformat = string.format
local ffi_cast, ffi_copy, ffi_gc, ffi_istype, ffi_new, ffi_string =
ffi.cast, ffi.copy, ffi.gc, ffi.istype, ffi.new, ffi.string
local concat = table.concat
local has_table_new, new_tab = pcall(require, "table.new")
if not has_table_new or type(new_tab) ~= "function" then
new_tab = function()
return {}
end
end
---@alias kiwi.ErrKind
---| '"KiwiErrNone"' # No error.
---| '"KiwiErrUnsatisfiableConstraint"' # The given constraint is required and cannot be satisfied.
---| '"KiwiErrUnknownConstraint"' # The given constraint has not been added to the solver.
---| '"KiwiErrDuplicateConstraint"' # The given constraint has already been added to the solver.
---| '"KiwiErrUnknownEditVariable"' # The given edit variable has not been added to the solver.
---| '"KiwiErrDuplicateEditVariable"' # The given edit variable has already been added to the solver.
---| '"KiwiErrBadRequiredStrength"' # The given strength is >= required.
---| '"KiwiErrInternalSolverError"' # An internal solver error occurred.
---| '"KiwiErrAlloc"' # A memory allocation error occurred.
---| '"KiwiErrNullObject"' # A method was invoked on a null or empty object.
---| '"KiwiErrUnknown"' # An unknown error occurred.
kiwi.ErrKind = ffi.typeof("enum KiwiErrKind") --[[@as kiwi.ErrKind]]
---@alias kiwi.RelOp
---| '"LE"' # <= (less than or equal)
---| '"GE"' # >= (greater than or equal)
---| '"EQ"' # == (equal)
kiwi.RelOp = ffi.typeof("enum KiwiRelOp")
kiwi.Strength = {
REQUIRED = 1001001000.0,
STRONG = 1000000.0,
MEDIUM = 1000.0,
WEAK = 1.0,
}
--- Create a custom constraint strength.
---@param a number: Scale factor 1e6
---@param b number: Scale factor 1e3
---@param c number: Scale factor 1
---@param w? number: Weight
---@return number
---@nodiscard
function kiwi.Strength.create(a, b, c, w)
local function clamp(n)
return math.max(0, math.min(1000, n))
end
w = w or 1.0
return clamp(a * w) * 1000000.0 + clamp(b * w) * 1000.0 + clamp(c * w)
end
local Var = ffi.typeof("struct KiwiVarRefType") --[[@as kiwi.Var]]
kiwi.Var = Var
local Term = ffi.typeof("struct KiwiTerm") --[[@as kiwi.Term]]
kiwi.Term = Term
local Expression = ffi.typeof("struct KiwiExpression") --[[@as kiwi.Expression]]
kiwi.Expression = Expression
local Constraint = ffi.typeof("struct KiwiConstraintRefType") --[[@as kiwi.Constraint]]
kiwi.Constraint = Constraint
-- JIT compiler NYI: bad argument type if ffi.sizeof is used with a structure member
local SIZEOF_TERM = ffi.sizeof(Term)
--- Define a constraint with expressions as `a <= b`.
---@param a kiwi.Expression|kiwi.Term|kiwi.Var|number
---@param b kiwi.Expression|kiwi.Term|kiwi.Var|number
---@param strength? number
---@return kiwi.Constraint
function kiwi.le(a, b, strength)
return Constraint(a - b, "LE", strength)
end
--- Define a constraint with expressions as `a >= b`.
---@param a kiwi.Expression|kiwi.Term|kiwi.Var|number
---@param b kiwi.Expression|kiwi.Term|kiwi.Var|number
---@param strength? number
---@return kiwi.Constraint
function kiwi.ge(a, b, strength)
return Constraint(a - b, "GE", strength)
end
--- Define a constraint with expressions as `a == b`.
---@param a kiwi.Expression|kiwi.Term|kiwi.Var|number
---@param b kiwi.Expression|kiwi.Term|kiwi.Var|number
---@param strength? number
---@return kiwi.Constraint
function kiwi.eq(a, b, strength)
return Constraint(a - b, "EQ", strength)
end
---@param expr kiwi.Expression
---@param term kiwi.Term
---@nodiscard
local function add_expr_term(expr, term)
local ret = ffi_new(Expression, expr.term_count + 1) --[[@as kiwi.Expression]]
ret.constant = expr.constant
ret.term_count = expr.term_count + 1
ffi_copy(ret.terms_, expr.terms_, SIZEOF_TERM * expr.term_count) ---@diagnostic disable-line: param-type-mismatch
ret.terms_[expr.term_count] = term
return ret
end
---@param constant number
---@param term kiwi.Term
---@nodiscard
local function new_expr_one(constant, term)
local ret = ffi_new(Expression, 1) --[[@as kiwi.Expression]]
ret.constant = constant
ret.term_count = 1
ret.terms_[0] = term
return ret
end
---@param constant number
---@param term1 kiwi.Term
---@param term2 kiwi.Term
---@nodiscard
local function new_expr_pair(constant, term1, term2)
local ret = ffi_new(Expression, 2) --[[@as kiwi.Expression]]
ret.constant = constant
ret.term_count = 2
ret.terms_[0] = term1
ret.terms_[1] = term2
return ret
end
--- Variables are the values the constraint solver calculates.
---@class kiwi.Var: ffi.ctype*
---@overload fun(name: string): kiwi.Var
---@operator mul(number): kiwi.Term
---@operator div(number): kiwi.Term
---@operator unm: kiwi.Term
---@operator add(kiwi.Expression|kiwi.Term|kiwi.Var|number): kiwi.Expression
---@operator sub(kiwi.Expression|kiwi.Term|kiwi.Var|number): kiwi.Expression
local Var_cls = {
le = kiwi.le,
ge = kiwi.ge,
eq = kiwi.eq,
--- Change the name of the variable.
---@type fun(self: kiwi.Var, name: string)
set_name = ckiwi.kiwi_var_set_name,
--- Get the current value of the variable.
---@type fun(self: kiwi.Var): number
value = ckiwi.kiwi_var_value,
--- Set the value of the variable.
---@type fun(self: kiwi.Var, value: number)
set = ckiwi.kiwi_var_set_value,
}
--- Get the name of the variable.
---@return string
function Var_cls:name()
return ffi_string(ckiwi.kiwi_var_name(self))
end
--- Create a term from this variable.
---@param coefficient number?
---@return kiwi.Term
function Var_cls:toterm(coefficient)
return Term(self, coefficient or 1.0)
end
ffi.metatype(Var, {
__index = Var_cls,
__new = function(_, name)
return ffi_gc(ckiwi.kiwi_var_new(name), ckiwi.kiwi_var_del)
end,
__mul = function(a, b)
if type(a) == "number" then
return Term(b, a)
elseif type(b) == "number" then
return Term(a, b)
end
error("Invalid var *")
end,
__div = function(a, b)
assert(type(b) == "number", "Invalid var /")
return Term(a, 1.0 / b)
end,
__unm = function(var)
return Term(var, -1.0)
end,
__add = function(a, b)
if ffi_istype(Var, b) then
local bt = Term(b)
if type(a) == "number" then
return new_expr_one(a, bt)
else
return new_expr_pair(0.0, Term(a), bt)
end
elseif ffi_istype(Term, b) then
return new_expr_pair(0.0, b, Term(a))
elseif ffi_istype(Expression, b) then
return add_expr_term(b, Term(a))
elseif type(b) == "number" then
return new_expr_one(b, Term(a))
end
error("Invalid var +")
end,
__sub = function(a, b)
return a + -b
end,
__tostring = function(var)
return var:name() .. "(" .. var:value() .. ")"
end,
})
--- Terms are the components of an expression.
--- Each term is a variable multiplied by a constant coefficient (default 1.0).
---@class kiwi.Term: ffi.ctype*
---@overload fun(var: kiwi.Var, coefficient: number?): kiwi.Term
---@field coefficient number
---@field var kiwi.Var
---@operator mul(number): kiwi.Term
---@operator div(number): kiwi.Term
---@operator unm: kiwi.Term
---@operator add(kiwi.Expression|kiwi.Term|kiwi.Var|number): kiwi.Expression
---@operator sub(kiwi.Expression|kiwi.Term|kiwi.Var|number): kiwi.Expression
local Term_cls = {
le = kiwi.le,
ge = kiwi.ge,
eq = kiwi.eq,
}
---@return number
function Term_cls:value()
return self.coefficient * self.var:value()
end
--- Create an expression from this term.
---@param constant number?
---@return kiwi.Expression
function Term_cls:toexpr(constant)
return new_expr_one(constant or 0.0, self)
end
ffi.metatype(Term, {
__index = Term_cls,
__new = function(_, var, coefficient)
return ffi_new(Term, var, coefficient or 1.0)
end,
__mul = function(a, b)
if type(b) == "number" then
return Term(a.var, a.coefficient * b)
elseif type(a) == "number" then
return Term(b.var, b.coefficient * a)
end
error("Invalid term *")
end,
__div = function(term, denom)
assert(type(denom) == "number", "Invalid term /")
return Term(term.var, term.coefficient / denom)
end,
__unm = function(term)
return Term(term.var, -term.coefficient)
end,
__add = function(a, b)
if ffi_istype(Var, b) then
return new_expr_pair(0.0, a, Term(b))
elseif ffi_istype(Term, b) then
if type(a) == "number" then
return new_expr_one(a, b)
else
return new_expr_pair(0.0, a, b)
end
elseif ffi_istype(Expression, b) then
return add_expr_term(b, a)
elseif type(b) == "number" then
return new_expr_one(b, a)
end
error("Invalid term + op")
end,
__sub = function(a, b)
return a + -b
end,
__tostring = function(term)
return tostring(term.var:name())
--return tostring(term.coefficient) .. " " .. term.var:name()
end,
})
do
---@param expr kiwi.Expression
---@param constant number
---@nodiscard
local function mul_expr_constant(expr, constant)
local ret = ffi_new(Expression, expr.term_count, expr.constant * constant, expr.term_count) --[[@as kiwi.Expression]]
for i = 0, expr.term_count - 1 do
ret.terms_[i] = ffi_new(Term, expr.terms_[i].var, expr.terms_[i].coefficient * constant) --[[@as kiwi.Term]]
end
return ret
end
---@param a kiwi.Expression
---@param b kiwi.Expression
---@nodiscard
local function add_expr_expr(a, b)
local ret = ffi_new(
Expression,
a.term_count + b.term_count,
a.constant + b.constant,
a.term_count + b.term_count
) --[[@as kiwi.Expression]]
ffi_copy(ret.terms_, a.terms_, SIZEOF_TERM * a.term_count) ---@diagnostic disable-line: param-type-mismatch
ffi_copy(ret.terms_[a.term_count], b.terms_, SIZEOF_TERM * b.term_count) ---@diagnostic disable-line: param-type-mismatch
return ret
end
---@param expr kiwi.Expression
---@param constant number
---@nodiscard
local function new_expr_constant(expr, constant)
local ret = ffi_new(Expression, expr.term_count) --[[@as kiwi.Expression]]
ret.constant = constant
ret.term_count = expr.term_count
ffi_copy(ret.terms_, expr.terms_, SIZEOF_TERM * expr.term_count) ---@diagnostic disable-line: param-type-mismatch
return ret
end
--- Expressions are a sum of terms with an added constant.
---@class kiwi.Expression: ffi.ctype*
---@overload fun(terms: kiwi.Term[], constant: number?): kiwi.Expression
---@field constant number
---@field package term_count number
---@field package terms_ ffi.cdata*
---@operator mul(number): kiwi.Expression
---@operator div(number): kiwi.Expression
---@operator unm: kiwi.Expression
---@operator add(kiwi.Expression|kiwi.Term|kiwi.Var|number): kiwi.Expression
---@operator sub(kiwi.Expression|kiwi.Term|kiwi.Var|number): kiwi.Expression
local Expression_cls = {
le = kiwi.le,
ge = kiwi.ge,
eq = kiwi.eq,
}
---@return number
---@nodiscard
function Expression_cls:value()
local sum = self.constant
for i = 0, self.term_count - 1 do
sum = sum + self.terms_[i]:value()
end
return sum
end
---@return kiwi.Term[]
---@nodiscard
function Expression_cls:terms()
local terms = new_tab(self.term_count, 0)
for i = 0, self.term_count - 1 do
terms[i + 1] = self.terms_[i]
end
return terms
end
---@return kiwi.Expression
---@nodiscard
function Expression_cls:copy()
return new_expr_constant(self, self.constant)
end
ffi.metatype(Expression, {
__index = Expression_cls,
__new = function(_, terms, constant)
return ffi_new(Expression, #terms, constant or 0.0, #terms, terms)
end,
__mul = function(a, b)
if type(a) == "number" then
return mul_expr_constant(b, a)
elseif type(b) == "number" then
return mul_expr_constant(a, b)
end
error("Invalid expr *")
end,
__div = function(expr, denom)
assert(type(denom) == "number", "Invalid expr /")
return mul_expr_constant(expr, 1.0 / denom)
end,
__unm = function(expr)
return mul_expr_constant(expr, -1.0)
end,
__add = function(a, b)
if ffi_istype(Var, b) then
return add_expr_term(a, Term(b))
elseif ffi_istype(Expression, b) then
if type(a) == "number" then
return new_expr_constant(b, a + b.constant)
else
return add_expr_expr(a, b)
end
elseif ffi_istype(Term, b) then
return add_expr_term(a, b)
elseif type(b) == "number" then
return new_expr_constant(a, a.constant + b)
end
error("Invalid expr +")
end,
__sub = function(a, b)
return a + -b
end,
__tostring = function(expr)
local tab = new_tab(expr.term_count + 1, 0)
for i = 0, expr.term_count - 1 do
tab[i + 1] = tostring(expr.terms_[i])
end
tab[expr.term_count + 1] = expr.constant
return concat(tab, " + ")
end,
})
end
--- A constraint is a linear inequality or equality with associated strength.
--- Constraints can be built with arbitrary left and right hand expressions. But
--- ultimately they all have the form `expression [op] 0`.
---@class kiwi.Constraint: ffi.ctype*
---@overload fun(expr: kiwi.Expression, op: kiwi.RelOp?, strength: number?): kiwi.Constraint
local Constraint_cls = {
--- The strength of the constraint.
---@type fun(self: kiwi.Constraint): number
strength = ckiwi.kiwi_constraint_strength,
--- The relational operator of the constraint.
---@type fun(self: kiwi.Constraint): kiwi.RelOp
op = ckiwi.kiwi_constraint_op,
--- Whether the constraint is violated in the current solution.
---@type fun(self: kiwi.Constraint): boolean
violated = ckiwi.kiwi_constraint_violated,
}
--- The reduced expression defining the constraint.
---@return kiwi.Expression
---@nodiscard
function Constraint_cls:expression()
local SZ = 8
local expr = ffi_new(Expression, SZ) --[[@as kiwi.Expression]]
local n = ckiwi.kiwi_constraint_expression(self, expr, SZ)
if n > SZ then
expr = ffi_new(Expression, n) --[[@as kiwi.Expression]]
ckiwi.kiwi_constraint_expression(self, expr, n)
end
return expr
end
--- Create a constraint between a pair of variables with ratio.
--- The constraint is of the form `left [op|==] coeff right + [constant|0.0]`.
---@param left kiwi.Var
---@param coeff number right side term coefficient
---@param right kiwi.Var
---@param constant number? constant (default 0.0)
---@param op kiwi.RelOp? relational operator (default "EQ")
---@param strength number? strength (default REQUIRED)
---@return kiwi.Constraint
---@nodiscard
function kiwi.new_pair_ratio_constraint(left, coeff, right, constant, op, strength)
assert(ffi_istype(Var, left) and ffi_istype(Var, right))
return Constraint(
new_expr_pair(-(constant or 0.0), Term(left), Term(right, -coeff)),
op,
strength
)
end
--- Create a constraint between a pair of variables with ratio.
--- The constraint is of the form `left [op|==] right + [constant|0.0]`.
---@param left kiwi.Var
---@param right kiwi.Var
---@param constant number? constant (default 0.0)
---@param op kiwi.RelOp? relational operator (default "EQ")
---@param strength number? strength (default REQUIRED)
---@return kiwi.Constraint
---@nodiscard
function kiwi.new_pair_constraint(left, right, constant, op, strength)
assert(ffi_istype(Var, left) and ffi_istype(Var, right))
return Constraint(
new_expr_pair(-(constant or 0.0), Term(left), Term(right, -1.0)),
op,
strength
)
end
--- Create a single term constraint
--- The constraint is of the form `var [op|==] [constant|0.0]`.
---@param var kiwi.Var
---@param constant number? constant (default 0.0)
---@param op kiwi.RelOp? relational operator (default "EQ")
---@param strength number? strength (default REQUIRED)
---@return kiwi.Constraint
---@nodiscard
function kiwi.new_single_constraint(var, constant, op, strength)
assert(ffi_istype(Var, var))
return Constraint(new_expr_one(-(constant or 0.0), Term(var)), op, strength)
end
local Strength = kiwi.Strength
local REQUIRED = Strength.REQUIRED
ffi.metatype(Constraint, {
__index = Constraint_cls,
__new = function(_, expr, op, strength)
return ffi_gc(
ckiwi.kiwi_constraint_new(expr, op or "EQ", strength or REQUIRED),
ckiwi.kiwi_constraint_del
)
end,
__tostring = function(self)
local ops = {
[0] = "<=",
">=",
"==",
}
local strengths = {
[Strength.REQUIRED] = "required",
[Strength.STRONG] = "strong",
[Strength.MEDIUM] = "medium",
[Strength.WEAK] = "weak",
}
local strength = self:strength()
return strformat(
"%s %s 0 | %s",
self:expression(),
ops[tonumber(self:op())],
strengths[strength] or tostring(strength)
)
end,
})
local Error_mt = {
__tostring = function(self)
return strformat("%s: (%s, %s)", self.message, self.solver, self.item)
end,
}
---@param kind kiwi.ErrKind
---@param message string
---@param solver kiwi.Solver
---@param item any
local function new_error(kind, message, solver, item)
---@class kiwi.Error
---@field kind kiwi.ErrKind
---@field message string
---@field solver kiwi.Solver?
---@field item any?
return setmetatable({
kind = kind,
message = message,
solver = solver,
item = item,
}, Error_mt)
end
local C = ffi.C
---@class kiwi.KiwiErr: ffi.ctype*
---@field package kind kiwi.ErrKind
---@field package message ffi.cdata*
---@field package must_free boolean
---@overload fun(): kiwi.KiwiErr
local KiwiErr = ffi.typeof("struct KiwiErr") --[[@as kiwi.KiwiErr]]
--
---@param f fun(solver: kiwi.Solver, item: any, ...): kiwi.KiwiErr?
---@param solver kiwi.Solver
---@param item any
local function try_solver(f, solver, item, ...)
local err = f(solver, item, ...)
if err ~= nil then
local kind = err.kind
local message = err.message ~= nil and ffi_string(err.message) or ""
if err.must_free then
print("FEEE")
C.free(err)
end
error(new_error(kind, message, solver, item))
end
end
---@class kiwi.Solver: ffi.ctype*
---@overload fun(): kiwi.Solver
local Solver_cls = {
--- Test whether a constraint is in the solver.
---@type fun(self: kiwi.Solver, constraint: kiwi.Constraint): boolean
has_constraint = ckiwi.kiwi_solver_has_constraint,
--- Test whether an edit variable has been added to the solver.
---@type fun(self: kiwi.Solver, var: kiwi.Var): boolean
has_edit_var = ckiwi.kiwi_solver_has_edit_var,
--- Update the values of the external solver variables.
---@type fun(self: kiwi.Solver)
update_vars = ckiwi.kiwi_solver_update_vars,
--- Reset the solver to the empty starting conditions.
---
--- This method resets the internal solver state to the empty starting
--- condition, as if no constraints or edit variables have been added.
--- This can be faster than deleting the solver and creating a new one
--- when the entire system must change, since it can avoid unecessary
--- heap (de)allocations.
---@type fun(self: kiwi.Solver)
reset = ckiwi.kiwi_solver_reset,
--- Dump a representation of the solver to stdout.
---@type fun(self: kiwi.Solver)
dump = ckiwi.kiwi_solver_dump,
}
--- Adds a constraint to the solver.
--- Raises
--- KiwiErrDuplicateConstraint: The given constraint has already been added to the solver.
--- KiwiErrUnsatisfiableConstraint: The given constraint is required and cannot be satisfied.
---@param constraint kiwi.Constraint
function Solver_cls:add_constraint(constraint)
try_solver(ckiwi.kiwi_solver_add_constraint, self, constraint)
end
--- Removes a constraint from the solver.
--- Raises
--- KiwiErrUnknownConstraint: The given constraint has not been added to the solver.
---@param constraint kiwi.Constraint
function Solver_cls:remove_constraint(constraint)
try_solver(ckiwi.kiwi_solver_remove_constraint, self, constraint)
end
--- Adds an edit variable to the solver.
---
--- This method should be called before the `suggestValue` method is
--- used to supply a suggested value for the given edit variable.
--- Raises
--- KiwiErrDuplicateEditVariable: The given edit variable has already been added to the solver.
--- KiwiErrBadRequiredStrength: The given strength is >= required.
---@param var kiwi.Var the variable to add as an edit variable
---@param strength number the strength of the edit variable (must be less than `Strength.REQUIRED`)
function Solver_cls:add_edit_var(var, strength)
try_solver(ckiwi.kiwi_solver_add_edit_var, self, var, strength)
end
--- Remove an edit variable from the solver.
--- Raises
--- KiwiErrUnknownEditVariable: The given edit variable has not been added to the solver
---@param var kiwi.Var the edit variable to remove
function Solver_cls:remove_edit_var(var)
try_solver(ckiwi.kiwi_solver_remove_edit_var, self, var)
end
--- Suggest a value for the given edit variable.
--- This method should be used after an edit variable has been added to the solver in order
--- to suggest the value for that variable. After all suggestions have been made,
--- the `update_vars` methods can be used to update the values of the external solver variables.
--- Raises
--- KiwiErrUnknownEditVariable: The given edit variable has not been added to the solver.
---@param var kiwi.Var the edit variable to suggest a value for
---@param value number the suggested value
function Solver_cls:suggest_value(var, value)
try_solver(ckiwi.kiwi_solver_suggest_value, self, var, value)
end
--- Dump a representation of the solver to a string.
---@return string
---@nodiscard
function Solver_cls:dumps()
local cs = ckiwi.kiwi_solver_dumps(self)
local s = ffi_string(cs)
C.free(cs)
return s
end
kiwi.Solver = ffi.metatype("struct KiwiSolver", {
__index = Solver_cls,
__new = function(_)
return ffi_gc(ckiwi.kiwi_solver_new(), ckiwi.kiwi_solver_del)
end,
__tostring = function(self)
return strformat("kiwi.Solver(0x%X)", ffi_cast("intptr_t", ffi_cast("void*", self)))
end,
}) --[[@as kiwi.Solver]]
return kiwi