Compare commits
3 Commits
playground
...
backup
| Author | SHA1 | Date | |
|---|---|---|---|
| b3876742c9 | |||
| 3b1a207b3f | |||
| 583b9234fd |
@@ -4,12 +4,12 @@
|
||||
import PackageDescription
|
||||
|
||||
let package = Package(
|
||||
name: "EcgSynKit",
|
||||
name: "ECGSynKit",
|
||||
products: [
|
||||
// Products define the executables and libraries a package produces, making them visible to other packages.
|
||||
.library(
|
||||
name: "EcgSynKit",
|
||||
targets: ["EcgSynKit"]
|
||||
name: "ECGSynKit",
|
||||
targets: ["ECGSynKit"]
|
||||
),
|
||||
],
|
||||
dependencies: [
|
||||
@@ -19,7 +19,7 @@ let package = Package(
|
||||
],
|
||||
targets: [
|
||||
.target(
|
||||
name: "EcgSynKit",
|
||||
name: "ECGSynKit",
|
||||
dependencies: [
|
||||
.product(name: "PFFFT", package: "SwiftPFFFT"),
|
||||
.product(name: "Algorithms", package: "swift-algorithms"),
|
||||
@@ -27,8 +27,8 @@ let package = Package(
|
||||
]
|
||||
),
|
||||
.testTarget(
|
||||
name: "EcgSynKitTests",
|
||||
dependencies: ["EcgSynKit"]
|
||||
name: "ECGSynKitTests",
|
||||
dependencies: ["ECGSynKit"]
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
80
Sources/ECGSynKit/ECGSyn.swift
Normal file
80
Sources/ECGSynKit/ECGSyn.swift
Normal file
@@ -0,0 +1,80 @@
|
||||
import Foundation
|
||||
import OdeInt
|
||||
import RealModule
|
||||
|
||||
public enum ECGSyn {
|
||||
public struct Parameters {
|
||||
/// The ECG amplitude in mV.
|
||||
let range: (Double, Double) = (-0.4, 1.4)
|
||||
|
||||
/// Amplitude of the noise.
|
||||
let aNoise: Double = 0.0
|
||||
|
||||
/// The angle of each attractor (P, Q, R, S, T) around the limit cycle, in radians.
|
||||
let theta: [Double] = [-70, -15, 0, 15, 100].map { $0 * .pi / 180 }
|
||||
|
||||
/// The position of attractors (P, Q, R, S, T) above or below the z=0 plane.
|
||||
let a: [Double] = [1.2, -5, 30, -7.5, 0.75]
|
||||
|
||||
/// Widths of the attractors (P, Q, R, S, T).
|
||||
let b: [Double] = [0.25, 0.1, 0.1, 0.1, 0.4]
|
||||
}
|
||||
|
||||
public static func generate(params: Parameters, rrSeries: RRSeries<Double>) -> [Double] {
|
||||
var rng = rrSeries.rng
|
||||
let srInternal = rrSeries.timeParameters.srInternal
|
||||
|
||||
// adjust extrema parameters for mean heart rate
|
||||
let hrFact = sqrt(rrSeries.timeParameters.hrMean / 60.0)
|
||||
let hrFactSqrt = sqrt(hrFact)
|
||||
|
||||
let ai = params.a
|
||||
let bi = params.b.map { $0 * hrFact }
|
||||
let ti = zip([hrFactSqrt, hrFact, 1, hrFact, hrFactSqrt], params.theta).map(*)
|
||||
|
||||
let fhi = rrSeries.rrParamaters.fhi
|
||||
|
||||
let nt = rrSeries.count
|
||||
|
||||
let dt = 1.0 / Double(srInternal)
|
||||
let ts = (0 ..< nt).map { Double($0) * dt }
|
||||
let x0 = SIMD3<Double>(1.0, 0.0, 0.04)
|
||||
|
||||
let result = SIMD3<Double>.integrate(over: ts, y0: x0, tol: 1e-6) { x, t in
|
||||
let ta = atan2(x[1], x[0])
|
||||
|
||||
let r0 = 1.0
|
||||
let a0 = 1.0 - sqrt(x[0] * x[0] + x[1] * x[1]) / r0
|
||||
|
||||
let w0 = 2 * .pi / rrSeries.valueAt(t)
|
||||
|
||||
let zbase = 0.005 * sin(2 * .pi * fhi * t)
|
||||
|
||||
var dxdt = SIMD3<Double>(a0 * x[0] - w0 * x[1], a0 * x[1] + w0 * x[0], 0.0)
|
||||
|
||||
for i in 0 ..< ti.count {
|
||||
let dt = remainder(ta - ti[i], 2 * .pi)
|
||||
|
||||
dxdt[2] += -ai[i] * dt * exp(-0.5 * (dt * dt) / (bi[i] * bi[i]))
|
||||
}
|
||||
dxdt[2] += -1.0 * (x[2] - zbase)
|
||||
|
||||
return dxdt
|
||||
}
|
||||
|
||||
// extract z and downsample to ECG sampling frequency
|
||||
let qstep = srInternal / rrSeries.timeParameters.srEcg
|
||||
var zresult = stride(from: 0, to: nt, by: qstep).map { result[$0][2] }
|
||||
|
||||
let (zmin, zmax) = zresult.minAndMax()!
|
||||
let zrange = zmax - zmin
|
||||
|
||||
// Scale signal between -0.4 and 1.2 mV
|
||||
// add uniformly distributed measurement noise
|
||||
for i in 0 ..< zresult.count {
|
||||
zresult[i] = (params.range.1 - params.range.0) * (zresult[i] - zmin) / zrange + params.range.0
|
||||
zresult[i] += params.aNoise * (2.0 * rng.nextDouble() - 1.0)
|
||||
}
|
||||
return zresult
|
||||
}
|
||||
}
|
||||
48
Sources/ECGSynKit/ECGSynKit.swift
Normal file
48
Sources/ECGSynKit/ECGSynKit.swift
Normal file
@@ -0,0 +1,48 @@
|
||||
import Algorithms
|
||||
import ComplexModule
|
||||
import RealModule
|
||||
import Foundation
|
||||
import PFFFT
|
||||
|
||||
public struct TimeParameters {
|
||||
/// The number of beats to simulate.
|
||||
let numBeats: Int = 12
|
||||
|
||||
/// The ECG sampling frequency in Hz.
|
||||
let srEcg: Int = 256
|
||||
|
||||
/// The internal sampling frequency in Hz.
|
||||
let srInternal: Int = 512
|
||||
|
||||
/// The mean heart rate in beats per minute.
|
||||
let hrMean: Double = 70.0
|
||||
|
||||
/// The standard deviation of the heart rate.
|
||||
let hrStd: Double = 1.0
|
||||
|
||||
/// RNG seed value.
|
||||
let seed: UInt64 = 8
|
||||
}
|
||||
|
||||
public struct RRParameters {
|
||||
/// Mayer wave frequency in Hz.
|
||||
let flo = 0.1
|
||||
|
||||
/// flo standard deviation.
|
||||
let flostd = 0.01
|
||||
|
||||
/// Respiratory rate frequency in Hz.
|
||||
let fhi = 0.25
|
||||
|
||||
/// fhi standard deviation.
|
||||
let fhistd = 0.01
|
||||
|
||||
/// The ratio of power between low and high frequencies.
|
||||
let lfhfRatio: Double = 0.5
|
||||
}
|
||||
|
||||
func stdev(_ data: [Double]) -> Double {
|
||||
let n = Double(data.count)
|
||||
let mean = data.reduce(0.0, +) / n
|
||||
return sqrt(data.lazy.map { ($0 - mean) * ($0 - mean) }.reduce(0.0, +) / (n - 1))
|
||||
}
|
||||
81
Sources/ECGSynKit/RRGenerator.swift
Normal file
81
Sources/ECGSynKit/RRGenerator.swift
Normal file
@@ -0,0 +1,81 @@
|
||||
import ComplexModule
|
||||
import Foundation
|
||||
import PFFFT
|
||||
import RealModule
|
||||
|
||||
public struct RRGenerator: ~Copyable {
|
||||
let nrr: Int
|
||||
|
||||
let fft: FFT<Double>
|
||||
let spectrum: Buffer<Complex<Double>>
|
||||
let signal: Buffer<Double>
|
||||
|
||||
var rng: RandomNumberGenerator
|
||||
|
||||
// mean and standard deviation of RR intervals
|
||||
let rrMean: Double
|
||||
let rrStd: Double
|
||||
|
||||
let timeParameters: TimeParameters
|
||||
|
||||
public init(params: TimeParameters) {
|
||||
typealias FFT = PFFFT.FFT<Double>
|
||||
|
||||
let sr = params.srInternal
|
||||
rrMean = 60.0 / params.hrMean
|
||||
rrStd = 60.0 * params.hrStd / (params.hrMean * params.hrMean)
|
||||
|
||||
nrr = FFT.nearestValidSize(params.numBeats * sr * Int(rrMean.rounded(.up)), higher: true)
|
||||
fft = try! FFT(n: nrr)
|
||||
spectrum = fft.makeSpectrumBuffer(extra: 1)
|
||||
signal = fft.makeSignalBuffer()
|
||||
|
||||
timeParameters = params
|
||||
rng = Xoshiro256Plus(seed: params.seed)
|
||||
}
|
||||
|
||||
public mutating func generateSeries(params: RRParameters) -> RRSeries<Double> {
|
||||
let rr = generateSignal(params: params)
|
||||
return RRSeries(timeParameters: timeParameters, rrParamaters: params, rng: rng, signal: rr)
|
||||
}
|
||||
|
||||
public mutating func generateSignal(params: RRParameters) -> [Double] {
|
||||
let w1 = 2.0 * .pi * params.flo
|
||||
let w2 = 2.0 * .pi * params.fhi
|
||||
let c1 = 2.0 * .pi * params.flostd
|
||||
let c2 = 2.0 * .pi * params.fhistd
|
||||
|
||||
let sig2 = 1.0
|
||||
let sig1 = params.lfhfRatio
|
||||
|
||||
let sr = Double(timeParameters.srInternal)
|
||||
|
||||
let dw = (sr / Double(nrr)) * 2.0 * .pi
|
||||
|
||||
spectrum.mapInPlaceSwapLast { i in
|
||||
let w = dw * Double(i)
|
||||
|
||||
let dw1 = w - w1
|
||||
let dw2 = w - w2
|
||||
let hw = sig1 * exp(-dw1 * dw1 / (2.0 * c1 * c1)) / sqrt(2.0 * .pi * c1 * c1)
|
||||
+ sig2 * exp(-dw2 * dw2 / (2.0 * c2 * c2)) / sqrt(2.0 * .pi * c2 * c2)
|
||||
|
||||
let sw = (sr / 2.0) * sqrt(hw)
|
||||
let ph = 2.0 * .pi * rng.nextDouble()
|
||||
|
||||
return Complex(length: sw, phase: ph)
|
||||
}
|
||||
|
||||
fft.inverse(spectrum: spectrum, signal: signal)
|
||||
|
||||
var rr = signal.map { $0 * 1.0 / Double(nrr) }
|
||||
|
||||
let xstd = stdev(rr)
|
||||
let ratio = rrStd / xstd
|
||||
|
||||
for i in 0 ..< nrr {
|
||||
rr[i] = rr[i] * ratio + rrMean
|
||||
}
|
||||
return rr
|
||||
}
|
||||
}
|
||||
44
Sources/ECGSynKit/RRSeries.swift
Normal file
44
Sources/ECGSynKit/RRSeries.swift
Normal file
@@ -0,0 +1,44 @@
|
||||
import Foundation
|
||||
import RealModule
|
||||
|
||||
public struct RRSeries<T: BinaryFloatingPoint> {
|
||||
public let timeParameters: TimeParameters
|
||||
public let rrParamaters: RRParameters
|
||||
let rng: RandomNumberGenerator
|
||||
|
||||
struct Segment {
|
||||
let end: T
|
||||
let value: T
|
||||
}
|
||||
let segments: [Segment]
|
||||
let count: Int
|
||||
|
||||
public init(timeParameters: TimeParameters, rrParamaters: RRParameters, rng: RandomNumberGenerator, signal: [T]) {
|
||||
self.timeParameters = timeParameters
|
||||
self.rrParamaters = rrParamaters
|
||||
self.rng = rng
|
||||
|
||||
let sr = T(timeParameters.srInternal)
|
||||
|
||||
var rrn = [Segment]()
|
||||
// generate piecewise RR time series
|
||||
do {
|
||||
var tecg = T.zero
|
||||
var i = 0
|
||||
while i < signal.count {
|
||||
tecg += signal[i]
|
||||
rrn.append(Segment(end: tecg, value: signal[i]))
|
||||
i = Int((tecg * sr).rounded(.toNearestOrEven)) + 1
|
||||
}
|
||||
}
|
||||
|
||||
segments = rrn
|
||||
count = signal.count
|
||||
}
|
||||
|
||||
public func valueAt(_ t: T) -> T {
|
||||
let index = min(segments.partitioningIndex { t < $0.end }, segments.endIndex - 1)
|
||||
return segments[index].value
|
||||
}
|
||||
|
||||
}
|
||||
9
Sources/ECGSynKit/RandomNumberGenerator.swift
Normal file
9
Sources/ECGSynKit/RandomNumberGenerator.swift
Normal file
@@ -0,0 +1,9 @@
|
||||
extension RandomNumberGenerator {
|
||||
mutating func nextDouble() -> Double {
|
||||
Double(next() >> 11) * 0x1.0p-53
|
||||
}
|
||||
|
||||
mutating func nextFloat() -> Float {
|
||||
Float(next() >> 40) * 0x1.0p-24
|
||||
}
|
||||
}
|
||||
@@ -56,8 +56,4 @@ struct Xoshiro256Plus: RandomNumberGenerator {
|
||||
|
||||
return result
|
||||
}
|
||||
|
||||
public mutating func nextDouble() -> Double {
|
||||
Float64(next() >> 11) * 0x1.0p-53
|
||||
}
|
||||
}
|
||||
@@ -1,255 +0,0 @@
|
||||
import Algorithms
|
||||
import ComplexModule
|
||||
import Foundation
|
||||
import OdeInt
|
||||
import PFFFT
|
||||
import PFFFTLib
|
||||
import RealModule
|
||||
|
||||
public struct Parameters {
|
||||
/// The ratio of power between low and high frequencies.
|
||||
let lfhfRatio: Double = 0.5
|
||||
|
||||
/// The ECT amplitude in mV.
|
||||
let amplitude: Double = 1.4
|
||||
|
||||
/// RNG seed value.
|
||||
let seed: UInt64 = 111
|
||||
|
||||
/// Amplitude of the noise.
|
||||
let aNoise: Double = 0.0
|
||||
|
||||
/// The angle of each attractor (P, Q, R, S, T) around the limit cycle, in radians.
|
||||
let theta: [Double] = [-60, -15, 0, 15, 90].map { $0 * .pi / 180 }
|
||||
|
||||
/// Widths of the attractors (P, Q, R, S, T).
|
||||
let a: [Double] = [1.2, -5, 30, -7.5, 0.75]
|
||||
|
||||
/// The position of attractors (P, Q, R, S, T) above or below the z=0 plane.
|
||||
let b: [Double] = [0.25, 0.1, 0.1, 0.1, 0.4]
|
||||
|
||||
/// Mayer wave frequency in Hz.
|
||||
let flo = 0.1
|
||||
|
||||
/// flo standard deviation.
|
||||
let flostd = 0.01
|
||||
|
||||
/// Respiratory rate frequency in Hz.
|
||||
let fhi = 0.25
|
||||
|
||||
/// fhi standard deviation.
|
||||
let fhistd = 0.01
|
||||
}
|
||||
|
||||
public struct TimeParameters {
|
||||
/// The number of beats to simulate.
|
||||
let numBeats: Int = 8
|
||||
|
||||
/// The ECG sampling frequency in Hz.
|
||||
let sfEcg: Int = 256
|
||||
|
||||
/// The internal sampling frequency in Hz.
|
||||
var sfInternal: Int = 512
|
||||
|
||||
/// The mean heart rate in beats per minute.
|
||||
let hrMean: Double = 75.0
|
||||
|
||||
/// The standard deviation of the heart rate.
|
||||
let hrStd: Double = 1.0
|
||||
}
|
||||
|
||||
func stdev(_ data: [Double]) -> Double {
|
||||
let n = Double(data.count)
|
||||
let mean = data.reduce(0.0, +) / n
|
||||
return sqrt(data.lazy.map { ($0 - mean) * ($0 - mean) }.reduce(0.0, +) / (n - 1))
|
||||
}
|
||||
|
||||
public struct RRProcess: ~Copyable {
|
||||
let nrr: Int
|
||||
let sfInternal: Int
|
||||
|
||||
let fft: FFT<Double>
|
||||
let spectrum: Buffer<Complex<Double>>
|
||||
let signal: Buffer<Double>
|
||||
|
||||
// mean and standard deviation of RR intervals
|
||||
let rrMean: Double
|
||||
let rrStd: Double
|
||||
|
||||
public init(params: TimeParameters) {
|
||||
sfInternal = params.sfInternal
|
||||
rrMean = 60.0 / params.hrMean
|
||||
rrStd = 60.0 * params.hrStd / (params.hrMean * params.hrMean)
|
||||
|
||||
nrr = Int(pow(2.0, ceil(log2(Double(params.numBeats * sfInternal) * rrMean))))
|
||||
|
||||
fft = try! FFT<Double>(n: nrr)
|
||||
spectrum = fft.makeSpectrumBuffer(extra: 1)
|
||||
signal = fft.makeSignalBuffer()
|
||||
}
|
||||
|
||||
public func generate(params: Parameters) -> [Double] {
|
||||
let w1 = 2.0 * .pi * params.flo
|
||||
let w2 = 2.0 * .pi * params.fhi
|
||||
let c1 = 2.0 * .pi * params.flostd
|
||||
let c2 = 2.0 * .pi * params.fhistd
|
||||
|
||||
let sig2 = 1.0
|
||||
let sig1 = params.lfhfRatio
|
||||
|
||||
let sf = Double(sfInternal)
|
||||
|
||||
let dw = (sf / Double(nrr)) * 2.0 * .pi
|
||||
|
||||
var rng = Xoshiro256Plus(seed: params.seed)
|
||||
|
||||
spectrum.mapInPlaceSwapLast { i in
|
||||
let w = dw * Double(i)
|
||||
|
||||
let dw1 = w - w1
|
||||
let dw2 = w - w2
|
||||
let hw = sig1 * exp(-dw1 * dw1 / (2.0 * c1 * c1)) / sqrt(2.0 * .pi * c1 * c1)
|
||||
+ sig2 * exp(-dw2 * dw2 / (2.0 * c2 * c2)) / sqrt(2.0 * .pi * c2 * c2)
|
||||
|
||||
let sw = (sf / 2.0) * sqrt(hw)
|
||||
let ph = 2.0 * .pi * rng.nextDouble()
|
||||
|
||||
return Complex(length: sw, phase: ph)
|
||||
}
|
||||
|
||||
fft.inverse(spectrum: spectrum, signal: signal)
|
||||
|
||||
var rr = signal.map { $0 * 1.0 / Double(nrr) }
|
||||
|
||||
let xstd = stdev(rr)
|
||||
let ratio = rrStd / xstd
|
||||
|
||||
for i in 0 ..< nrr {
|
||||
rr[i] = rr[i] * ratio + rrMean
|
||||
}
|
||||
return rr
|
||||
}
|
||||
}
|
||||
|
||||
public struct Generator: ~Copyable {
|
||||
let rrp: RRProcess
|
||||
|
||||
let hrFact: Double
|
||||
let hrFactSqrt: Double
|
||||
|
||||
let dt: Double
|
||||
|
||||
|
||||
let timeParams: TimeParameters
|
||||
|
||||
public init(params: TimeParameters) {
|
||||
rrp = RRProcess(params: params)
|
||||
|
||||
// stretching factors for intervals based on Bazett's formula
|
||||
hrFact = sqrt(params.hrMean / 60)
|
||||
hrFactSqrt = sqrt(hrFact)
|
||||
|
||||
// init time scales
|
||||
dt = 1.0 / Double(params.sfInternal)
|
||||
|
||||
timeParams = params
|
||||
}
|
||||
|
||||
public func compute(params: Parameters) -> [Double] {
|
||||
let ai = params.a
|
||||
let bi = params.b.map { $0 * hrFact }
|
||||
// adjust extrema parameters for mean heart rate
|
||||
let ti = zip([hrFactSqrt, hrFact, 1, hrFact, hrFactSqrt], params.theta).map(*)
|
||||
|
||||
let sfInternal = timeParams.sfInternal
|
||||
|
||||
let rr = rrp.generate(params: params)
|
||||
|
||||
let fhi = params.fhi
|
||||
|
||||
let dt = self.dt
|
||||
|
||||
// generate piecewise RR
|
||||
let rrpc = [Double](unsafeUninitializedCapacity: rr.count * 2) { rrpc, count in
|
||||
var tecg = 0.0
|
||||
var i = 0
|
||||
var j = 0
|
||||
while i < rr.count {
|
||||
tecg += rr[i]
|
||||
j = Int((tecg / dt).rounded(.toNearestOrEven))
|
||||
for k in i ... j {
|
||||
rrpc[k] = rr[i]
|
||||
}
|
||||
i = j + 1
|
||||
}
|
||||
count = i
|
||||
}
|
||||
print("rrpc: \(rrpc.count)")
|
||||
|
||||
let nt = rr.count
|
||||
|
||||
let x0 = SIMD3<Double>(1.0, 0.0, 0.04)
|
||||
|
||||
var mip = 0
|
||||
var mt2 = 0.0
|
||||
|
||||
let ts = (0 ..< nt).map { Double($0) * dt }
|
||||
print("ts: \(ts.count) \(ts.last!)")
|
||||
|
||||
let result = SIMD3<Double>.integrate(over: ts, y0: x0, tol: 1e-6) { x, t in
|
||||
let ta = atan2(x[1], x[0])
|
||||
|
||||
let r0 = 1.0
|
||||
let a0 = 1.0 - sqrt(x[0] * x[0] + x[1] * x[1]) / r0
|
||||
|
||||
let ip = Int(floor(t * Double(sfInternal)))
|
||||
mip = max(ip, mip)
|
||||
mt2 = max(t, mt2)
|
||||
//print("ip: \(ip) mip: \(mip) mt2: \(mt2)")
|
||||
|
||||
let w0 = 2 * .pi / rrpc[ip]
|
||||
|
||||
let zbase = 0.005 * sin(2 * .pi * fhi * t)
|
||||
|
||||
var dxdt = SIMD3<Double>()
|
||||
|
||||
dxdt[0] = a0 * x[0] - w0 * x[1]
|
||||
dxdt[1] = a0 * x[1] + w0 * x[0]
|
||||
|
||||
dxdt[2] = 0.0
|
||||
|
||||
for i in 0 ..< ti.count {
|
||||
let dt = remainder(ta - ti[i], 2 * .pi)
|
||||
let dt² = dt * dt
|
||||
|
||||
dxdt[2] += -ai[i] * dt * exp(-0.5 * dt² / (bi[i] * bi[i]))
|
||||
}
|
||||
dxdt[2] += -1.0 * (x[2] - zbase)
|
||||
|
||||
return dxdt
|
||||
}
|
||||
|
||||
print("mip: \(mip)")
|
||||
|
||||
// downsample to ECG sampling frequency
|
||||
let qstep = sfInternal / timeParams.sfEcg
|
||||
var zresult = stride(from: 0, to: nt, by: qstep).map { result[$0][2] }
|
||||
|
||||
let (zmin, zmax) = zresult.minAndMax()!
|
||||
let zrange = zmax - zmin
|
||||
|
||||
var rng = Xoshiro256Plus(seed: params.seed + 1)
|
||||
|
||||
// Scale signal between -0.4 and 1.2 mV
|
||||
// add uniformly distributed measurement noise
|
||||
for i in 0 ..< zresult.count {
|
||||
zresult[i] = 1.6 * (zresult[i] - zmin) / zrange - 0.4
|
||||
zresult[i] += params.aNoise * (2.0 * rng.nextDouble() - 1.0)
|
||||
}
|
||||
|
||||
// write zresult to text/CSV file
|
||||
let filename = "ecg.csv"
|
||||
try! zresult[0 ..< 800].lazy.map { String($0) }.joined(separator: "\n").write(to: URL(fileURLWithPath: filename), atomically: true, encoding: .utf8)
|
||||
return zresult
|
||||
}
|
||||
}
|
||||
20
Tests/ECGSynKitTests/ECGSynKitTests.swift
Normal file
20
Tests/ECGSynKitTests/ECGSynKitTests.swift
Normal file
@@ -0,0 +1,20 @@
|
||||
import Testing
|
||||
@testable import ECGSynKit
|
||||
import PFFFT
|
||||
import ComplexModule
|
||||
import Foundation
|
||||
|
||||
@Test func fftTest () {
|
||||
let timeParameters = TimeParameters()
|
||||
let rrParameters = RRParameters()
|
||||
|
||||
var rrg = RRGenerator(params: timeParameters)
|
||||
|
||||
let parameters = ECGSyn.Parameters()
|
||||
let ecg = ECGSyn.generate(params: parameters, rrSeries: rrg.generateSeries(params: rrParameters))
|
||||
// write ecg to file
|
||||
let url = URL(fileURLWithPath: "ecg.txt")
|
||||
let ecgString = ecg.map { String($0) }.joined(separator: "\n")
|
||||
try! ecgString.write(to: url, atomically: true, encoding: .utf8)
|
||||
|
||||
}
|
||||
@@ -1,17 +0,0 @@
|
||||
import Testing
|
||||
@testable import EcgSynKit
|
||||
import PFFFT
|
||||
import ComplexModule
|
||||
|
||||
@Test func fftTest () {
|
||||
let p0 = TimeParameters()
|
||||
let c = Generator(params: p0)
|
||||
let p = Parameters()
|
||||
let z = c.compute(params: p)
|
||||
|
||||
// print("z: \(z)")
|
||||
print("PFFFT.simdArch: \(FFT<Complex<Float32>>.simdArch)")
|
||||
//fft(data: &a, isign: -1)
|
||||
//print("out: \(rr)")
|
||||
|
||||
}
|
||||
Reference in New Issue
Block a user